
Andrew R Clark

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9573393/publications.pdf Version: 2024-02-01

ANDREW P CLARK

#	Article	IF	CITATIONS
1	Mitochondria as Key Players in the Pathogenesis and Treatment of Rheumatoid Arthritis. Frontiers in Immunology, 2021, 12, 673916.	2.2	39
2	Spontaneously Resolving Joint Inflammation Is Characterised by Metabolic Agility of Fibroblast-Like Synoviocytes. Frontiers in Immunology, 2021, 12, 725641.	2.2	14
3	Inflammation causes remodeling of mitochondrial cytochrome <i>c</i> oxidase mediated by the bifunctional gene <i>C15orf48</i> . Science Advances, 2021, 7, eabl5182.	4.7	29
4	Enhanced therapeutic efficacy of a novel colon-specific nanosystem loading emodin on DSS-induced experimental colitis. Phytomedicine, 2020, 78, 153293.	2.3	15
5	Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis. Nature Medicine, 2020, 26, 1295-1306.	15.2	304
6	The Role of TTP Phosphorylation in the Regulation of Inflammatory Cytokine Production by MK2/3. Journal of Immunology, 2019, 203, 2291-2300.	0.4	28
7	Protein phosphatase 2A as a therapeutic target in inflammation and neurodegeneration. , 2019, 201, 181-201.		63
8	Enhancing tristetraprolin activity reduces the severity of cigarette smokeâ€induced experimental chronic obstructive pulmonary disease. Clinical and Translational Immunology, 2019, 8, e01084.	1.7	14
9	<scp>IL</scp> â€33 regulates cytokine production and neutrophil recruitment via the p38 <scp>MAPK</scp> â€activated kinases <scp>MK</scp> 2/3. Immunology and Cell Biology, 2019, 97, 54-71.	1.0	42
10	Review: Synovial Cell Metabolism and Chronic Inflammation in Rheumatoid Arthritis. Arthritis and Rheumatology, 2018, 70, 984-999.	2.9	210
11	Tryptophan-Mediated Interactions between Tristetraprolin and the CNOT9 Subunit Are Required for CCR4-NOT Deadenylase Complex Recruitment. Journal of Molecular Biology, 2018, 430, 722-736.	2.0	34
12	The role of microRNAs in glucocorticoid action. Journal of Biological Chemistry, 2018, 293, 1865-1874.	1.6	53
13	MAPK p38 regulates inflammatory gene expression via tristetraprolin: Doing good by stealth. International Journal of Biochemistry and Cell Biology, 2018, 94, 6-9.	1.2	45
14	Stroma: the forgotten cells of innate immune memory. Clinical and Experimental Immunology, 2018, 193, 24-36.	1.1	38
15	Treatment of inflammatory arthritis via targeting of tristetraprolin, a master regulator of pro-inflammatory gene expression. Annals of the Rheumatic Diseases, 2017, 76, 612-619.	0.5	63
16	Priming in response to pro-inflammatory cytokines is a feature of adult synovial but not dermal fibroblasts. Arthritis Research and Therapy, 2017, 19, 35.	1.6	50
17	Gain-of-Function Mutation of Tristetraprolin Impairs Negative Feedback Control of Macrophages <i>In Vitro</i> yet Has Overwhelmingly Anti-Inflammatory Consequences <i>In Vivo</i> . Molecular and Cellular Biology, 2017, 37, .	1.1	8
18	Targeting <scp>PP</scp> 2A and proteasome activity ameliorates features of allergic airway disease in mice. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 1891-1903.	2.7	20

ANDREW R CLARK

#	Article	IF	CITATIONS
19	The RNA-binding protein Tristetraprolin (TTP) is a critical negative regulator of the NLRP3 inflammasome. Journal of Biological Chemistry, 2017, 292, 6869-6881.	1.6	53
20	Macrophage responses to lipopolysaccharide are modulated by a feedback loop involving prostaglandin E2, dual specificity phosphatase 1 and tristetraprolin. Scientific Reports, 2017, 7, 4350.	1.6	60
21	Beta Interferon Production Is Regulated by p38 Mitogen-Activated Protein Kinase in Macrophages via both MSK1/2- and Tristetraprolin-Dependent Pathways. Molecular and Cellular Biology, 2017, 37, .	1.1	19
22	The control of inflammation via the phosphorylation and dephosphorylation of tristetraprolin: a tale of two phosphatases. Biochemical Society Transactions, 2016, 44, 1321-1337.	1.6	63
23	The phosphorylated form of FTY720 activates PP2A, represses inflammation and is devoid of S1P agonism in A549 lung epithelial cells. Scientific Reports, 2016, 6, 37297.	1.6	25
24	Strain dependent differences in glucocorticoid-induced bone loss between C57BL/6J and CD-1 mice. Scientific Reports, 2016, 6, 36513.	1.6	28
25	Activating protein phosphatase 2A (PP2A) enhances tristetraprolin (TTP) anti-inflammatory function in A549 lung epithelial cells. Cellular Signalling, 2016, 28, 325-334.	1.7	37
26	Basal protein phosphatase 2A activity restrains cytokine expression: role for MAPKs and tristetraprolin. Scientific Reports, 2015, 5, 10063.	1.6	29
27	Dual-Specificity Phosphatase 1 and Tristetraprolin Cooperate To Regulate Macrophage Responses to Lipopolysaccharide. Journal of Immunology, 2015, 195, 277-288.	0.4	58
28	Temporal regulation of cytokine mRNA expression by tristetraprolin: dynamic control by p38 MAPK and MKP-1. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L973-L980.	1.3	26
29	Dominant Suppression of Inflammation via Targeted Mutation of the mRNA Destabilizing Protein Tristetraprolin. Journal of Immunology, 2015, 195, 265-276.	0.4	66
30	Role of mitogen-activated protein kinase phosphatase-1 in corticosteroid insensitivity of chronic oxidant lung injury. European Journal of Pharmacology, 2014, 744, 108-114.	1.7	14
31	PARP-14 combines with tristetraprolin in the selective posttranscriptional control of macrophage tissue factor expression. Blood, 2014, 124, 3646-3655.	0.6	58
32	Dualâ€specificity phosphatase 1–null mice exhibit spontaneous osteolytic disease and enhanced inflammatory osteolysis in experimental arthritis. Arthritis and Rheumatism, 2012, 64, 2201-2210.	6.7	38
33	Inflammatory regulation of glucocorticoid metabolism in mesenchymal stromal cells. Arthritis and Rheumatism, 2012, 64, 2404-2413.	6.7	43
34	Antiâ€inflammatory effects of selective glucocorticoid receptor modulators are partially dependent on upâ€regulation of dual specificity phosphatase 1. British Journal of Pharmacology, 2012, 165, 1124-1136.	2.7	42
35	Maps and legends: The quest for dissociated ligands of the glucocorticoid receptor. , 2012, 134, 54-67.		187
36	The p38 MAPK Pathway in Rheumatoid Arthritis: A Sideways Look. Open Rheumatology Journal, 2012, 6, 209-219.	0.1	77

ANDREW R CLARK

#	Article	IF	CITATIONS
37	Inhibition of p38 MAPK-dependent bronchial contraction after ozone by corticosteroids. European Respiratory Journal, 2011, 37, 933-942.	3.1	35
38	Dual Specificity Phosphatase 1 Regulates Human Inducible Nitric Oxide Synthase Expression by p38 MAP Kinase. Mediators of Inflammation, 2011, 2011, 1-15.	1.4	11
39	Aurothiomalate inhibits cyclooxygenase 2, matrix metalloproteinase 3, and interleukinâ€6 expression in chondrocytes by increasing MAPK phosphatase 1 expression and decreasing p38 phosphorylation: MAPK phosphatase 1 as a novel target for antirheumatic drugs. Arthritis and Rheumatism, 2010, 62, 1650-1659.	6.7	57
40	IL-10 inhibits transcription elongation of the human <i>TNF</i> gene in primary macrophages. Journal of Experimental Medicine, 2010, 207, 2081-2088.	4.2	97
41	c-Jun N-Terminal Kinase Primes Endothelial Cells at Atheroprone Sites for Apoptosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 546-553.	1.1	61
42	<i>Mkp1</i> Is a c-Jun Target Gene That Antagonizes JNK-Dependent Apoptosis in Sympathetic Neurons. Journal of Neuroscience, 2010, 30, 10820-10832.	1.7	58
43	Glucocorticoid Regulation of Mouse and Human Dual Specificity Phosphatase 1 (DUSP1) Genes. Journal of Biological Chemistry, 2010, 285, 2642-2652.	1.6	65
44	MAPKAP Kinase 2 Blocks Tristetraprolin-directed mRNA Decay by Inhibiting CAF1 Deadenylase Recruitment. Journal of Biological Chemistry, 2010, 285, 27590-27600.	1.6	133
45	Identification of NURR1 as a Mediator of MIF Signaling During Chronic Arthritis. American Journal of Pathology, 2010, 177, 2366-2378.	1.9	21
46	The p38 MAPK pathway inhibits tristetraprolinâ€directed decay of interleukinâ€10 and proâ€inflammatory mediator mRNAs in murine macrophages. FEBS Letters, 2009, 583, 1933-1938.	1.3	81
47	The p38 MAPK pathway mediates both antiinflammatory and proinflammatory processes: Comment on the article by Damjanov and the editorial by Genovese. Arthritis and Rheumatism, 2009, 60, 3513-3514.	6.7	32
48	Role of Dual Specificity Phosphatases in Biological Responses to Glucocorticoids. Journal of Biological Chemistry, 2008, 283, 25765-25769.	1.6	74
49	Increased Endothelial Mitogen-Activated Protein Kinase Phosphatase-1 Expression Suppresses Proinflammatory Activation at Sites That Are Resistant to Atherosclerosis. Circulation Research, 2008, 103, 726-732.	2.0	102
50	Anti-inflammatory functions of glucocorticoid-induced genes. Molecular and Cellular Endocrinology, 2007, 275, 79-97.	1.6	221
51	Antiinflammatory effects of dexamethasone are partly dependent on induction of dual specificity phosphatase 1. Journal of Experimental Medicine, 2006, 203, 1883-1889.	4.2	385
52	Dual-specificity phosphatase 1: a critical regulator of innate immune responses. Biochemical Society Transactions, 2006, 34, 1018-1023.	1.6	141
53	The RNA binding proteinZfp36l1is required for normal vascularisation and post-transcriptionally regulates VEGF expression. Developmental Dynamics, 2006, 235, 3144-3155.	0.8	93
54	Posttranslational Regulation of Tristetraprolin Subcellular Localization and Protein Stability by p38 Mitogen-Activated Protein Kinase and Extracellular Signal-Regulated Kinase Pathways. Molecular and Cellular Biology, 2006, 26, 2408-2418.	1.1	238

#	Article	IF	CITATIONS
55	Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 Regulates Tumor Necrosis Factor mRNA Stability and Translation Mainly by Altering Tristetraprolin Expression, Stability, and Binding to Adenine/Uridine-Rich Element. Molecular and Cellular Biology, 2006, 26, 2399-2407.	1.1	365
56	Stabilization of IFN-γ mRNA by MAPK p38 in IL-12– and IL-18–stimulated human NK cells. Blood, 2005, 105, 282-288.	0.6	114
57	The Stability of Tristetraprolin mRNA Is Regulated by Mitogen-activated Protein Kinase p38 and by Tristetraprolin Itself. Journal of Biological Chemistry, 2004, 279, 32393-32400.	1.6	136
58	The involvement of AU-rich element-binding proteins in p38 mitogen-activated protein kinase pathway-mediated mRNA stabilisation. Cellular Signalling, 2004, 16, 1113-1121.	1.7	305
59	Structural and functional dissection of a conserved destabilizing element of cyclo-oxygenase-2 mRNA: evidence against the involvement of AUF-1 [AU-rich element/poly(U)-binding/degradation factor-1], AUF-2, tristetraprolin, HuR (Hu antigen R) or FBP1 (far-upstream-sequence-element-binding protein 1). Biochemical lournal. 2004. 377. 629-639.	1.7	78
60	Post-transcriptional regulation of gene expression by mitogen-activated protein kinase p38. FEBS Letters, 2003, 546, 37-44.	1.3	173
61	Crosstalk between glucocorticoids and mitogen-activated protein kinase signalling pathways. Current Opinion in Pharmacology, 2003, 3, 404-411.	1.7	99
62	MAP kinase phosphatase 1: a novel mediator of biological effects of glucocorticoids?. Journal of Endocrinology, 2003, 178, 5-12.	1.2	140
63	Dexamethasone Causes Sustained Expression of Mitogen-Activated Protein Kinase (MAPK) Phosphatase 1 and Phosphatase-Mediated Inhibition of MAPK p38. Molecular and Cellular Biology, 2002, 22, 7802-7811.	1.1	339
64	Identification of a novel AU-rich-element-binding protein which is related to AUF1. Biochemical Journal, 2002, 366, 709-719.	1.7	53
65	Mitogen-Activated Protein Kinase p38 Controls the Expression and Posttranslational Modification of Tristetraprolin, a Regulator of Tumor Necrosis Factor Alpha mRNA Stability. Molecular and Cellular Biology, 2001, 21, 6461-6469.	1.1	418
66	The 3′ Untranslated Region of Tumor Necrosis Factor Alpha mRNA Is a Target of the mRNA-Stabilizing Factor HuR. Molecular and Cellular Biology, 2001, 21, 721-730.	1.1	270
67	Dexamethasone Destabilizes Cyclooxygenase 2 mRNA by Inhibiting Mitogen-Activated Protein Kinase p38. Molecular and Cellular Biology, 2001, 21, 771-780.	1.1	234
68	Regulation of Cyclooxygenase 2 mRNA Stability by the Mitogen-Activated Protein Kinase p38 Signaling Cascade. Molecular and Cellular Biology, 2000, 20, 4265-4274.	1.1	382
69	Regulation of tumour necrosis factor $\hat{I}\pm$ mRNA stability by the mitogen-activated protein kinase p38 signalling cascade. FEBS Letters, 2000, 483, 57-61.	1.3	204
70	Post-transcriptional regulation of pro-inflammatory gene expression. Arthritis Research, 2000, 2, 172.	2.0	70
71	p38 Mitogen-activated Protein Kinase Regulates Cyclooxygenase-2 mRNA Stability and Transcription in Lipopolysaccharide-treated Human Monocytes. Journal of Biological Chemistry, 1999, 274, 264-269.	1.6	464
72	A p38 MAP kinase inhibitor regulates stability of interleukin-1-induced cyclooxygenase-2 mRNA. FEBS Letters, 1998, 439, 75-80.	1.3	194

ANDREW R CLARK

#	Article	IF	CITATIONS
73	Identification and characterization of a functional retinoic acid/thyroid hormone-response element upstream of the human insulin gene enhancer. Biochemical Journal, 1995, 309, 863-870.	1.7	32
74	Nutrient regulation of insulin gene expression. FASEB Journal, 1994, 8, 20-27.	0.2	131
75	Human insulin gene enhancer-binding proteins in pancreatic α and β cell lines. FEBS Letters, 1993, 329, 139-143.	1.3	19
76	How is the developmental timing and tissue-specificity of insulin gene expression controlled?. Journal of Endocrinology, 1993, 136, 187-190.	1.2	8
77	Cell-specific gene expression in the islets of Langerhans: E boxes and TAAT boxes. Biochemical Society Transactions, 1993, 21, 154-159.	1.6	6
78	Negative regulation of transcription in eukaryotes. Biochemical Journal, 1993, 296, 521-541.	1.7	80
79	Two proteins act as the IUF1 insulin gene enhancer binding factor. FEBS Letters, 1991, 290, 27-30.	1.3	23
80	Metabolic control of insulin gene expression and biosynthesis. Proceedings of the Nutrition Society, 1991, 50, 553-558.	0.4	7