Birgitte Regenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9573323/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metabolic Engineering, 2006, 8, 102-111.	7.0	311
2	Circular DNA elements of chromosomal origin are common in healthy human somatic tissue. Nature Communications, 2018, 9, 1069.	12.8	232
3	The permease homologue Ssy1p controls the expression of amino acid and peptide transporter genes in Saccharomyces cerevisiae. Molecular Microbiology, 1998, 27, 643-650.	2.5	213
4	Reproducibility of Oligonucleotide Microarray Transcriptome Analyses. Journal of Biological Chemistry, 2002, 277, 37001-37008.	3.4	208
5	Growth-rate regulated genes have profound impact on interpretation of transcriptome profiling in Saccharomyces cerevisiae. Genome Biology, 2006, 7, R107.	9.6	205
6	Extrachromosomal circular DNA is common in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3114-22.	7.1	205
7	Substrate specificity and gene expression of the amino-acid permeases in Saccharomyces cerevisiae. Current Genetics, 1999, 36, 317-328.	1.7	202
8	Adaptation to diverse nitrogen-limited environments by deletion or extrachromosomal element formation of the <i>GAP1</i> locus. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18551-18556.	7.1	135
9	Improvement of Galactose Uptake in Saccharomyces cerevisiae through Overexpression of Phosphoglucomutase: Example of Transcript Analysis as a Tool in Inverse Metabolic Engineering. Applied and Environmental Microbiology, 2005, 71, 6465-6472.	3.1	116
10	Transcriptional, Proteomic, and Metabolic Responses to Lithium in Galactose-grown Yeast Cells. Journal of Biological Chemistry, 2003, 278, 32141-32149.	3.4	83
11	Sensitive detection of circular DNAs at single-nucleotide resolution using guided realignment of partially aligned reads. BMC Bioinformatics, 2019, 20, 663.	2.6	75
12	Robust multi-scale clustering of large DNA microarray datasets with the consensus algorithm. Bioinformatics, 2006, 22, 58-67.	4.1	72
13	<i>Saccharomyces cerevisiae</i> — a model to uncover molecular mechanisms for yeast biofilm biology. FEMS Immunology and Medical Microbiology, 2012, 65, 169-182.	2.7	66
14	Lifelong physical activity is associated with promoter hypomethylation of genes involved in metabolism, myogenesis, contractile properties and oxidative stress resistance in aged human skeletal muscle. Scientific Reports, 2019, 9, 3272.	3.3	63
15	Dip5p mediates high-affinity and high-capacity transport of L-glutamate and L-aspartate in Saccharomyces cerevisiae. Current Genetics, 1998, 33, 171-177.	1.7	60
16	The roles of galactitol, galactoseâ€1â€phosphate, and phosphoglucomutase in galactoseâ€induced toxicity in <i>Saccharomyces cerevisiae</i> . Biotechnology and Bioengineering, 2008, 101, 317-326.	3.3	58
17	Extrachromosomal circular DNA in cancer: history, current knowledge, and methods. Trends in Genetics, 2022, 38, 766-781.	6.7	57
18	C-Terminal Deletion Analysis of Plant Plasma Membrane H + -ATPase: Yeast as a Model System for Solute Transport across the Plant Plasma Membrane. Plant Cell, 1995, 7, 1655.	6.6	54

BIRGITTE REGENBERG

#	Article	IF	CITATIONS
19	Global Transcriptional and Physiological Responses of Saccharomyces cerevisiae to Ammonium, l-Alanine, or l-Glutamine Limitation. Applied and Environmental Microbiology, 2006, 72, 6194-6203.	3.1	52
20	Near-Random Distribution of Chromosome-Derived Circular DNA in the Condensed Genome of Pigeons and the Larger, More Repeat-Rich Human Genome. Genome Biology and Evolution, 2020, 12, 3762-3777.	2.5	52
21	Formation of Extrachromosomal Circular DNA from Long Terminal Repeats of Retrotransposons in <i>Saccharomyces cerevisiae</i> . G3: Genes, Genomes, Genetics, 2016, 6, 453-462.	1.8	44
22	CRISPR-C: circularization of genes and chromosome by CRISPR in human cells. Nucleic Acids Research, 2018, 46, e131.	14.5	39
23	Regulation of apoptosis and autophagy in mouse and human skeletal muscle with aging and lifelong exercise training. Experimental Gerontology, 2018, 111, 141-153.	2.8	38
24	Cysteine uptake by Saccharomyces cerevisiae is accomplished by multiple permeases. Current Genetics, 1999, 35, 609-617.	1.7	37
25	Genome-wide Purification of Extrachromosomal Circular DNA from Eukaryotic Cells. Journal of Visualized Experiments, 2016, , e54239 .	0.3	37
26	Circular DNA in the human germline and its association with recombination. Molecular Cell, 2022, 82, 209-217.e7.	9.7	37
27	Genetic Basis for <i>Saccharomyces cerevisiae</i> Biofilm in Liquid Medium. G3: Genes, Genomes, Genetics, 2014, 4, 1671-1680.	1.8	36
28	Saccharomyces cerevisiae biofilm tolerance towards systemic antifungals depends on growth phase. BMC Microbiology, 2014, 14, 305.	3.3	35
29	Genome-wide transcriptional response of aSaccharomyces cerevisiae strain with an altered redox metabolism. Biotechnology and Bioengineering, 2004, 85, 269-276.	3.3	32
30	Pseudomonas aeruginosa and Saccharomyces cerevisiae Biofilm in Flow Cells. Journal of Visualized Experiments, 2011, , .	0.3	32
31	Circle‣eq reveals genomic and diseaseâ€specific hallmarks in urinary cellâ€free extrachromosomal circular DNAs. Clinical and Translational Medicine, 2022, 12, e817.	4.0	31
32	GAP1, a novel selection and counter-selection marker for multiple gene disruptions inSaccharomyces cerevisiae. Yeast, 2000, 16, 1111-1119.	1.7	30
33	Transcriptional profiling of extracellular amino acid sensing inSaccharomyces cerevisiaeand the role of Stp1p and Stp2p. Yeast, 2004, 21, 635-648.	1.7	29
34	A common mechanism involving the TORC1 pathway can lead to amphotericin B-persistence in biofilm and planktonic Saccharomyces cerevisiae populations. Scientific Reports, 2016, 6, 21874.	3.3	28
35	Replicative aging is associated with loss of genetic heterogeneity from extrachromosomal circular DNA in Saccharomyces cerevisiae. Nucleic Acids Research, 2020, 48, 7883-7898.	14.5	25
36	Use of laminar flow patterning for miniaturised biochemical assays. Lab on A Chip, 2004, 4, 654-657.	6.0	24

BIRGITTE REGENBERG

#	Article	IF	CITATIONS
37	Division of labour in the yeast: <scp><i>Saccharomyces cerevisiae</i></scp> . Yeast, 2017, 34, 399-406.	1.7	24
38	The Synthetic Amphipathic Peptidomimetic LTX109 Is a Potent Fungicide That Disturbs Plasma Membrane Integrity in a Sphingolipid Dependent Manner. PLoS ONE, 2013, 8, e69483.	2.5	23
39	Persistence and drug tolerance in pathogenic yeast. Current Genetics, 2017, 63, 19-22.	1.7	23
40	Deletion of RTS1 , Encoding a Regulatory Subunit of Protein Phosphatase 2A, Results in Constitutive Amino Acid Signaling via Increased Stp1p Processing. Eukaryotic Cell, 2006, 5, 174-179.	3.4	22
41	Amino Acid Transporter Genes Are Essential for FLO11-Dependent and FLO11-Independent Biofilm Formation and Invasive Growth in Saccharomyces cerevisiae. PLoS ONE, 2012, 7, e41272.	2.5	20
42	Amino acid residues important for substrate specificity of the amino acid permeases Can1p and Gnp1p inSaccharomyces cerevisiae. Yeast, 2001, 18, 1429-1440.	1.7	16
43	Clonal yeast biofilms can reap competitive advantages through cell differentiation without being obligatorily multicellular. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161303.	2.6	16
44	Multicellular group formation in <i>Saccharomyces cerevisiae</i> . Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191098.	2.6	16
45	Grr1p is required for transcriptional induction of amino acid permease genes and proper transcriptional regulation of genes in carbon metabolism of Saccharomyces cerevisiae. Current Genetics, 2005, 47, 139-149.	1.7	15
46	A unifying model for extrachromosomal circular DNA load in eukaryotic cells. Seminars in Cell and Developmental Biology, 2022, 128, 40-50.	5.0	15
47	A model for generating several adaptive phenotypes from a single genetic event. Communicative and Integrative Biology, 2013, 6, e23933.	1.4	12
48	To Be or Not to Be: Circular RNAs or mRNAs From Circular DNAs?. Frontiers in Genetics, 2019, 10, 940.	2.3	12
49	Advanced Microscopy of Microbial Cells. Advances in Biochemical Engineering/Biotechnology, 2010, 124, 21-54.	1.1	8
50	Antifungal properties of peptidomimetics with an arginine-[β-(2,5,7-tri-tert-butylindol-3-yl)alanine]-arginine motif against Saccharomyces cerevisiae and Zygosaccharomyces bailii. FEMS Yeast Research, 2015, 15, .	2.3	8
51	Targeted removal of mitochondrial DNA from mouse and human extrachromosomal circular DNA with CRISPR-Cas9. Computational and Structural Biotechnology Journal, 2022, 20, 3059-3067.	4.1	8
52	Isolation, characterization, and genome assembly of <i>Barnettozyma botsteinii</i> sp. nov. and novel strains of <i>Kurtzmaniella quercitrusa</i> isolated from the intestinal tract of the termite <i>Macrotermes bellicosus</i> . G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	7
53	RNAi as a Tool to Study Virulence in the Pathogenic Yeast Candida glabrata. Frontiers in Microbiology, 2019, 10, 1679.	3.5	6