
Michael T Heneka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9573062/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cerebral dysfunctions caused by sepsis during ageing. Nature Reviews Immunology, 2022, 22, 444-458.	10.6	55
2	p38 Inhibition Decreases Tau Toxicity in Microglia and Improves Their Phagocytic Function. Molecular Neurobiology, 2022, 59, 1632-1648.	1.9	6
3	Soluble TAM receptors sAXL and sTyro3 predict structural and functional protection in Alzheimer's disease. Neuron, 2022, 110, 1009-1022.e4.	3.8	27
4	New insights into the genetic etiology of Alzheimer's disease and related dementias. Nature Genetics, 2022, 54, 412-436.	9.4	700
5	Characteristics of subjective cognitive decline associated with amyloid positivity. Alzheimer's and Dementia, 2022, 18, 1832-1845.	0.4	22
6	Falls at advanced age – The importance to search for benign paroxysmal positional vertigo (BPPV). Experimental Gerontology, 2022, 165, 111868.	1.2	2
7	Interrelations of Alzheimer´s disease candidate biomarkers neurogranin, fatty acidâ€binding protein 3 and ferritin to neurodegeneration and neuroinflammation. Journal of Neurochemistry, 2021, 157, 2210-2224.	2.1	15
8	The BDNFVal66Met SNP modulates the association between beta-amyloid and hippocampal disconnection in Alzheimer's disease. Molecular Psychiatry, 2021, 26, 614-628.	4.1	61
9	Vaccination with (1–11)E2 in alum efficiently induces an antibody response to β-amyloid without affecting brain β-amyloid load and microglia activation in 3xTg mice. Aging Clinical and Experimental Research, 2021, 33, 1383-1387.	1.4	3
10	Major Surgery Affects Memory in Individuals with Cerebral Amyloid-β Pathology. Journal of Alzheimer's Disease, 2021, 79, 863-874.	1.2	9
11	mTOR-dependent translation amplifies microglia priming in aging mice. Journal of Clinical Investigation, 2021, 131, .	3.9	43
12	Hippocampal and Hippocampal-Subfield Volumes From Early-Onset Major Depression and Bipolar Disorder to Cognitive Decline. Frontiers in Aging Neuroscience, 2021, 13, 626974.	1.7	15
13	Longitudinal Neurocognitive and Pulmonological Profile of Long COVID-19: Protocol for the COVIMMUNE-Clin Study. JMIR Research Protocols, 2021, 10, e30259.	0.5	8
14	Deletion of the inflammatory S100-A9/MRP14 protein does not influence survival in hSOD1G93A ALS mice. Neurobiology of Aging, 2021, 101, 181-186.	1.5	2
15	Multi ohort profiling reveals elevated CSF levels of brainâ€enriched proteins in Alzheimer's disease. Annals of Clinical and Translational Neurology, 2021, 8, 1456-1470.	1.7	19
16	Systemic inflammation induced the delayed reduction of excitatory synapses in the CA3 during ageing. Journal of Neurochemistry, 2021, 159, 525-542.	2.1	25
17	Differential interaction with <scp>TREM2</scp> modulates microglial uptake of modified Al̂ ² species. Glia, 2021, 69, 2917-2932.	2.5	9
18	In vivo mechanisms of cortical network dysfunction induced by systemic inflammation. Brain, Behavior, and Immunity, 2021, 96, 113-126.	2.0	12

#	Article	IF	CITATIONS
19	Microglia jointly degrade fibrillar alpha-synuclein cargo by distribution through tunneling nanotubes. Cell, 2021, 184, 5089-5106.e21.	13.5	158
20	SFRP1 modulates astrocyteâ€ŧoâ€microglia crosstalk in acute and chronic neuroinflammation. EMBO Reports, 2021, 22, e51696.	2.0	27
21	Proteopathic tau primes and activates interleukin- 1^2 via myeloid-cell-specific MyD88- and NLRP3-ASC-inflammasome pathway. Cell Reports, 2021, 36, 109720.	2.9	42
22	Microglial NLRP3 Inflammasome Activation upon TLR2 and TLR5 Ligation by Distinct α-Synuclein Assemblies. Journal of Immunology, 2021, 207, 2143-2154.	0.4	53
23	Peripheral and central immune system crosstalk in Alzheimer disease — a research prospectus. Nature Reviews Neurology, 2021, 17, 689-701.	4.9	169
24	Long-term exposure to fine particulate matter, lung function and cognitive performance: A prospective Dutch cohort study on the underlying routes. Environmental Research, 2021, 201, 111533.	3.7	16
25	Time course of dementia following sepsis in German health claims data. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	3.1	12
26	TREM2 modulates differential deposition of modified and non-modified AÎ ² species in extracellular plaques and intraneuronal deposits. Acta Neuropathologica Communications, 2021, 9, 168.	2.4	12
27	A microRNA signature that correlates with cognition and is a target against cognitive decline. EMBO Molecular Medicine, 2021, 13, e13659.	3.3	29
28	Inflammasome activation in neurodegenerative diseases. Essays in Biochemistry, 2021, 65, 885-904.	2.1	23
29	Microglial PDâ€l stimulation by astrocytic PDâ€L1 suppresses neuroinflammation and Alzheimer's disease pathology. EMBO Journal, 2021, 40, e108662.	3.5	41
30	Teaching an old dog new tricks: serum troponin T as a biomarker in amyotrophic lateral sclerosis. Brain Communications, 2021, 3, fcab274.	1.5	10
31	Characterization of the NIAâ€AA Research Framework stage 2 in the longitudinal multicenter DELCODE study. Alzheimer's and Dementia, 2021, 17, .	0.4	0
32	In vivo amyloid staging in individuals with subjective cognitive decline in DELCODE Study. Alzheimer's and Dementia, 2021, 17, .	0.4	0
33	Artificial neural network visualization methods reveal diagnostically relevant brain regions to detect Alzheimer's disease: The first step towards comprehensive artificial intelligence. Alzheimer's and Dementia, 2021, 17, .	0.4	0
34	Prediction of amyloidâ€positivity in individuals with subjective cognitive decline: Machine learning approaches to optimize numberâ€neededâ€toâ€screen. Alzheimer's and Dementia, 2021, 17, .	0.4	0
35	CA3 excitatory synapse loss as a chronic effect of septic shock in middle-aged mice Alzheimer's and Dementia, 2021, 17 Suppl 3, e052228.	0.4	0
36	Quantitative proteomics of synaptosome <i>S</i> â€nitrosylation in Alzheimer's disease. Journal of Neurochemistry, 2020, 152, 710-726.	2.1	30

#	Article	IF	CITATIONS
37	A rare heterozygous <i>TREM2</i> coding variant identified in familial clustering of dementia affects an intrinsically disordered protein region and function of TREM2. Human Mutation, 2020, 41, 169-181.	1.1	4
38	Multicenter Alzheimer's and Parkinson's disease immune biomarker verification study. Alzheimer's and Dementia, 2020, 16, 292-304.	0.4	29
39	The role of innate immune responses and neuroinflammation in amyloid accumulation and progression of Alzheimer's disease. Immunology and Cell Biology, 2020, 98, 28-41.	1.0	231
40	An immune-cell signature marks the brain in Alzheimer's disease. Nature, 2020, 577, 322-323.	13.7	21
41	In vivo characterization of functional states of cortical microglia during peripheral inflammation. Brain, Behavior, and Immunity, 2020, 87, 243-255.	2.0	38
42	Soluble Al̂ ² oligomers and protofibrils induce NLRP3 inflammasome activation in microglia. Journal of Neurochemistry, 2020, 155, 650-661.	2.1	91
43	Microglia in Alzheimer's disease: Local heroes!. Journal of Experimental Medicine, 2020, 217, .	4.2	9
44	Small vessel disease more than Alzheimer's disease determines diffusion MRI alterations in memory clinic patients. Alzheimer's and Dementia, 2020, 16, 1504-1514.	0.4	35
45	Multimodal MRI analysis of basal forebrain structure and function across the Alzheimer's disease spectrum. NeuroImage: Clinical, 2020, 28, 102495.	1.4	17
46	Feasibility of mobile appâ€based assessment of memory functions: Insights from a citizen science study. Alzheimer's and Dementia, 2020, 16, e039149.	0.4	1
47	Innate immune activation of the NLRP3 inflammasome pathway drives tau pathology. Alzheimer's and Dementia, 2020, 16, e039815.	0.4	0
48	Cognitive and biological characteristics of stage 2 of AD in the clinical multicenter DELCODE Study. Alzheimer's and Dementia, 2020, 16, e040265.	0.4	0
49	NLRP3 inflammasome activation regulates microglial migration. Alzheimer's and Dementia, 2020, 16, e040946.	0.4	0
50	Hippocampal volumetric variability is associated with memory in subjective cognitive decline. Alzheimer's and Dementia, 2020, 16, e043527.	0.4	0
51	Overview of immune system in AD. Alzheimer's and Dementia, 2020, 16, e044146.	0.4	0
52	Decreased cortical thickness in individuals with subjective cognitive decline with and without CSFâ€ADâ€pathology: Data from the DELCODE Study. Alzheimer's and Dementia, 2020, 16, e044741.	0.4	1
53	Awareness of cognitive decline and CSFâ€biomarkers in memory clinic patients: Results from the DELCODEâ€study. Alzheimer's and Dementia, 2020, 16, e044744.	0.4	0
54	The effects of Mediterranean diet on memory and Alzheimer's disease biomarkers. Alzheimer's and Dementia, 2020, 16, e045349.	0.4	0

#	Article	IF	CITATIONS
55	The Entorhinal Cortex Atrophy Score Is Diagnostic and Prognostic in Mild Cognitive Impairment. Journal of Alzheimer's Disease, 2020, 75, 99-108.	1.2	10
56	Enduring Changes in Neuronal Function upon Systemic Inflammation Are NLRP3 Inflammasome Dependent. Journal of Neuroscience, 2020, 40, 5480-5494.	1.7	36
57	Immediate and long-term consequences of COVID-19 infections for the development of neurological disease. Alzheimer's Research and Therapy, 2020, 12, 69.	3.0	367
58	T cells in Alzheimer's disease: space invaders. Lancet Neurology, The, 2020, 19, 285-287.	4.9	10
59	β-Amyloid Clustering around ASC Fibrils Boosts Its Toxicity in Microglia. Cell Reports, 2020, 30, 3743-3754.e6.	2.9	109
60	Neuroimmune Connections in Aging and Neurodegenerative Diseases. Trends in Immunology, 2020, 41, 300-312.	2.9	111
61	Do infections have a role in the pathogenesis of Alzheimer disease?. Nature Reviews Neurology, 2020, 16, 193-197.	4.9	96
62	PLCG2 protective variant p.P522R modulates tau pathology and disease progression in patients with mild cognitive impairment. Acta Neuropathologica, 2020, 139, 1025-1044.	3.9	40
63	Minor neuropsychological deficits in patients with subjective cognitive decline. Neurology, 2020, 95, e1134-e1143.	1.5	58
64	Elevated levels of Secreted-Frizzled-Related-Protein 1 contribute to Alzheimer's disease pathogenesis. Nature Neuroscience, 2019, 22, 1258-1268.	7.1	48
65	Systemic inflammation impairs microglial AÎ ² clearance through <scp>NLRP</scp> 3 inflammasome. EMBO Journal, 2019, 38, e101064.	3.5	226
66	Norepinephrine as a modulator of microglial dynamics. Nature Neuroscience, 2019, 22, 1745-1746.	7.1	7
67	Inflammasomeâ€mediated innate immunity in Alzheimer's disease. FASEB Journal, 2019, 33, 13075-13084.	0.2	55
68	Use of mild cognitive impairment and prodromal AD/MCI due to AD in clinical care: a European survey. Alzheimer's Research and Therapy, 2019, 11, 74.	3.0	28
69	Multicenter Tract-Based Analysis of Microstructural Lesions within the Alzheimer's Disease Spectrum: Association with Amyloid Pathology and Diagnostic Usefulness. Journal of Alzheimer's Disease, 2019, 72, 455-465.	1.2	15
70	Higher CSF Tau Levels Are Related to Hippocampal Hyperactivity and Object Mnemonic Discrimination in Older Adults. Journal of Neuroscience, 2019, 39, 8788-8797.	1.7	64
71	Prevalence of abnormal Alzheimer's disease biomarkers in patients with subjective cognitive decline: cross-sectional comparison of three European memory clinic samples. Alzheimer's Research and Therapy, 2019, 11, 8.	3.0	23
72	CNS-Specific Synthesis of Interleukin 23 Induces a Progressive Cerebellar Ataxia and the Accumulation of Both T and B Cells in the Brain: Characterization of a Novel Transgenic Mouse Model. Molecular Neurobiology, 2019, 56, 7977-7993.	1.9	17

#	Article	IF	CITATIONS
73	Dysregulation of TLR5 and TAM Ligands in the Alzheimer's Brain as Contributors to Disease Progression. Molecular Neurobiology, 2019, 56, 6539-6550.	1.9	31
74	NLRP3 inflammasome activation drives tau pathology. Nature, 2019, 575, 669-673.	13.7	782
75	Microglia take centre stage in neurodegenerative disease. Nature Reviews Immunology, 2019, 19, 79-80.	10.6	41
76	Smaller medial temporal lobe volumes in individuals with subjective cognitive decline and biomarker evidence of Alzheimer's disease—Data from three memory clinic studies. Alzheimer's and Dementia, 2019, 15, 185-193.	0.4	28
77	Microglia: You'll Never Walk Alone!. Immunity, 2018, 48, 195-197.	6.6	6
78	Left frontal hub connectivity delays cognitive impairment in autosomal-dominant and sporadic Alzheimer's disease. Brain, 2018, 141, 1186-1200.	3.7	83
79	The ERICA Score: An MR Imaging–based Visual Scoring System for the Assessment of Entorhinal Cortex Atrophy in Alzheimer Disease. Radiology, 2018, 288, 226-333.	3.6	33
80	Doublecortin expression in CD8+ Tâ€cells and microglia at sites of amyloidâ€Î² plaques: A potential role in shaping plaque pathology?. Alzheimer's and Dementia, 2018, 14, 1022-1037.	0.4	36
81	Design and first baseline data of the DZNE multicenter observational study on predementia Alzheimer's disease (DELCODE). Alzheimer's Research and Therapy, 2018, 10, 15.	3.0	131
82	Microglia modulation through external vagus nerve stimulation in a murine model of Alzheimer's disease. Journal of Neurochemistry, 2018, 146, 76-85.	2.1	65
83	Characterization and clinical use of inflammatory cerebrospinal fluid protein markers in Alzheimer's disease. Alzheimer's Research and Therapy, 2018, 10, 25.	3.0	74
84	IL-17A Promotes Granulocyte Infiltration, Myelin Loss, Microglia Activation, and Behavioral Deficits During Cuprizone-Induced Demyelination. Molecular Neurobiology, 2018, 55, 946-957.	1.9	44
85	Innate Immunity and Neurodegeneration. Annual Review of Medicine, 2018, 69, 437-449.	5.0	221
86	Variability and temporal dynamics of novel object recognition in aging male C57BL/6 mice. Behavioural Processes, 2018, 157, 711-716.	0.5	17
87	P1â€379: CORTICAL THINNING IN SUBJECTIVE COGNITIVE DECLINE WITH AND WITHOUT AD PATHOLOGY: DATA FROM THE DELCODE STUDY. Alzheimer's and Dementia, 2018, 14, P443.	0.4	0
88	P3â€327: NEUROPSYCHIATRIC SYMPTOMS IN ATâ€RISK GROUPS FOR AD DEMENTIA AND THEIR RELATION TO AE BIOMARKERS: DATA FROM THE DELCODE STUDY. Alzheimer's and Dementia, 2018, 14, P1206.) _{0.4}	0
89	P2â€434: EFFECTS OF AGE AND CSF MEASURES OF TAU ON MNEMONIC DISCRIMINATION OF OBJECTS AND SCENES IN MEDIAL TEMPORAL LOBE PATHWAYS. Alzheimer's and Dementia, 2018, 14, P879.	0.4	0
90	ICâ€Pâ€084: EFFECTS OF AGE AND CSF MEASURES OF TAU ON MNEMONIC DISCRIMINATION OF OBJECTS AND SCENES IN MEDIAL TEMPORAL LOBE PATHWAYS. Alzheimer's and Dementia, 2018, 14, P72.	0.4	0

#	Article	IF	CITATIONS
91	P1â€028: OCCUPATIONAL COGNITIVE REQUIREMENTS ARE AN IMPORTANT PROXY MEASURE OF COGNITIVE RESERVE: EVIDENCE FROM THE AGECODE AND DELCODE STUDIES. Alzheimer's and Dementia, 2018, 14, P276.	0.4	0
92	P3â€366: MULTICENTER RESTING STATE FUNCTIONAL CONNECTIVITY IN PRODROMAL AND DEMENTIA STAGES O ALZHEIMER'S DISEASE: RESULTS FROM THE DZNE DELCODE STUDY. Alzheimer's and Dementia, 2018, 14, P1228.	F 0.4	0
93	P3â€591: A GERMAN VERSION OF THE LIFETIME OF EXPERIENCES QUESTIONNAIRE (LEQ) TO MEASURE COGNITIVE RESERVE: VALIDATION RESULTS FROM THE DELCODE STUDY. Alzheimer's and Dementia, 2018, 14, P1352.	0.4	8
94	F4â€07â€03: RELATIONSHIP BETWEEN LOCUS COERULEUS MRI CONTRAST, COGNITION AND CSF BIOMARKERS AGING AND ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P1393.	IN 0.4	0
95	F1â€04â€02: ASSOCIATION BETWEEN NEURAL NOVELTY RESPONSES AND CSF BIOMARKERS OF ALZHEIMER'S DISEASE: ANATOMICAL SPECIFICITY AND DEPENDENCE ON ATROPHY. Alzheimer's and Dementia, 2018, 14, P206.	0.4	0
96	F4â€08â€04: SUBJECTIVE COGNITIVE DECLINE, AS MEASURED WITH A STRUCTURED INTERVIEW, IS RELATED TO AMYLOID PATHOLOGY IN COGNITIVELY HEALTHY OLDER ADULTS. Alzheimer's and Dementia, 2018, 14, P1396.	0.4	0
97	F1â€04â€03: EFFECTS OF AGE AND TAU MEASURED IN CSF ON MNEMONIC DISCRIMINATION OF OBJECTS AND SCENES IN MEDIAL TEMPORAL LOBE PATHWAYS. Alzheimer's and Dementia, 2018, 14, P207.	0.4	0
98	P4â€068: LEVELS OF THE ASTROCYTEâ€DERIVED PROTEINS GFAP AND S100B IN THE CEREBROSPINAL FLUID OF HEALTHY INDIVIDUALS AND ALZHEIMER'S DISEASE PATIENTS AT DIFFERENT DISEASE STAGES. Alzheimer's and Dementia, 2018, 14, P1458.	0.4	1
99	Inflammasome signalling in brain function and neurodegenerative disease. Nature Reviews Neuroscience, 2018, 19, 610-621.	4.9	514
100	Cannabinoid 1 Receptor Signaling on Hippocampal GABAergic Neurons Influences Microglial Activity. Frontiers in Molecular Neuroscience, 2018, 11, 295.	1.4	26
101	Transcriptome analysis of alcohol-treated microglia reveals downregulation of beta amyloid phagocytosis. Journal of Neuroinflammation, 2018, 15, 141.	3.1	34
102	A novel CHCHD10 mutation implicates a Mia40â€dependent mitochondrial import deficit in ALS. EMBO Molecular Medicine, 2018, 10, .	3.3	43
103	Beneficial Effect of a Selective Adenosine A2A Receptor Antagonist in the APPswe/PS1dE9 Mouse Model of Alzheimer's Disease. Frontiers in Molecular Neuroscience, 2018, 11, 235.	1.4	72
104	The NMDA receptor antagonist Radiprodil reverses the synaptotoxic effects of different amyloid-beta (Aβ) species on long-term potentiation (LTP). Neuropharmacology, 2018, 140, 184-192.	2.0	22
105	Inflammasome-derived cytokine IL18 suppresses amyloid-induced seizures in Alzheimer-prone mice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9002-9007.	3.3	41
106	Multicenter Resting State Functional Connectivity in Prodromal and Dementia Stages of Alzheimer's Disease. Journal of Alzheimer's Disease, 2018, 64, 801-813.	1.2	19
107	Safety and efficacy of rasagiline as an add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: a randomised, double-blind, parallel-group, placebo-controlled, phase 2 trial. Lancet Neurology, The, 2018, 17, 681-688.	4.9	51
108	Intramembranous processing by γâ€secretase regulates reverse signaling of ephrinâ€B2 in migration of microglia. Glia, 2017, 65, 1103-1118.	2.5	13

#	Article	IF	CITATIONS
109	<i>TBK1</i> Mutation Spectrum in an Extended European Patient Cohort with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis. Human Mutation, 2017, 38, 297-309.	1.1	87
110	Inflammasome activation and innate immunity in <scp>A</scp> lzheimer's disease. Brain Pathology, 2017, 27, 220-222.	2.1	119
111	Activation of the <scp>NLRP</scp> 3 inflammasome in microglia: the role of ceramide. Journal of Neurochemistry, 2017, 143, 534-550.	2.1	101
112	A guiding map for inflammation. Nature Immunology, 2017, 18, 826-831.	7.0	506
113	Proteome profiling of s-nitrosylated synaptosomal proteins by isobaric mass tags. Journal of Neuroscience Methods, 2017, 291, 95-100.	1.3	5
114	[P2–074]: MODELING OF HIDDEN CAUSES FOR DYNAMIC CHANGES IN STRUCTURAL INTEGRITY AND COGNITION IN SUBJECTIVE COGNITIVE DECLINE: A DELCODE PROJECT. Alzheimer's and Dementia, 2017, 13, P634.	0.4	0
115	Danger-associated molecular patterns in Alzheimer's disease. Journal of Leukocyte Biology, 2017, 101, 87-98.	1.5	158
116	United Again: STING and the Police. Neuron, 2017, 96, 1207-1208.	3.8	1
117	Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer's disease. Nature, 2017, 552, 355-361.	13.7	664
118	Targeting Neuroinflammation to Treat Alzheimer's Disease. CNS Drugs, 2017, 31, 1057-1082.	2.7	182
119	[P3–164]: FUNCTIONAL CHARACTERIZATION OF A RARE GENETIC VARIANT IN PHOSPHOLIPASE Cγ2 WHICH IS ASSOCIATED WITH A BENEFICIAL EFFECT ON THE PROGRESSION OF ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2017, 13, P997.	0.4	0
120	[P2–088]: CHRONIC AND ACUTE SYSTEMIC INFLAMMATION AND LONGâ€TERM COGNITIVE DECLINE. Alzheimer's and Dementia, 2017, 13, P640.	0.4	2
121	Microglia in Alzheimer's disease. Journal of Clinical Investigation, 2017, 127, 3240-3249.	3.9	622
122	<scp>sTREM</scp> 2 cerebrospinal fluid levels are a potential biomarker for microglia activity in earlyâ€stage Alzheimer's disease and associate with neuronal injury markers. EMBO Molecular Medicine, 2016, 8, 466-476.	3.3	392
123	Thoughts on Obesity and Brain Glucose. Cell, 2016, 165, 773-775.	13.5	5
124	Early Changes in Hippocampal Neurogenesis in Transgenic Mouse Models for Alzheimer's Disease. Molecular Neurobiology, 2016, 53, 5796-5806.	1.9	71
125	Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming. Science Translational Medicine, 2016, 8, 333ra50.	5.8	271
126	Microglia in Alzheimer's Disease: The Good, the Bad and the Ugly. Current Alzheimer Research, 2016, 13, 370-380.	0.7	72

#	Article	IF	CITATIONS
127	Translocator protein and new targets for neuroinflammation. Clinical and Translational Imaging, 2015, 3, 391-402.	1.1	23
128	Effect of pioglitazone medication on the incidence of dementia. Annals of Neurology, 2015, 78, 284-294.	2.8	153
129	Measuring Compounds in Exhaled Air to Detect Alzheimer's Disease and Parkinson's Disease. PLoS ONE, 2015, 10, e0132227.	1.1	55
130	Reduction of microbleeds by immunosuppression in a patient with Aβ-related vascular inflammation. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e165.	3.1	9
131	Cortical Thinning in Individuals with Subjective Memory Impairment. Journal of Alzheimer's Disease, 2015, 45, 139-146.	1.2	66
132	Innate immunity in Alzheimer's disease. Nature Immunology, 2015, 16, 229-236.	7.0	619
133	Neuroinflammation in Alzheimer's disease. Lancet Neurology, The, 2015, 14, 388-405.	4.9	4,129
134	PLD3 in non-familial Alzheimer's disease. Nature, 2015, 520, E3-E5.	13.7	58
135	ÎSecretase processing of APP inhibits neuronal activity in the hippocampus. Nature, 2015, 526, 443-447.	13.7	308
136	A distinct clinical phenotype in a German kindred with motor neuron disease carrying aCHCHD10mutation. Brain, 2015, 138, e376-e376.	3.7	42
137	Pan-PPAR Modulation Effectively Protects APP/PS1 Mice from Amyloid Deposition and Cognitive Deficits. Molecular Neurobiology, 2015, 51, 661-671.	1.9	35
138	CXCR3 promotes plaque formation and behavioral deficits in an Alzheimer's disease model. Journal of Clinical Investigation, 2015, 125, 365-378.	3.9	106
139	SUCLG2 identified as both a determinator of CSF Aβ1–42 levels and an attenuator of cognitive decline in Alzheimer's disease. Human Molecular Genetics, 2014, 23, 6644-6658.	1.4	45
140	Ear2 Deletion Causes Early Memory and Learning Deficits in APP/PS1 Mice. Journal of Neuroscience, 2014, 34, 8845-8854.	1.7	54
141	TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Science Translational Medicine, 2014, 6, 243ra86.	5.8	600
142	Body Fluid Cytokine Levels in Mild Cognitive Impairment and Alzheimer's Disease: a Comparative Overview. Molecular Neurobiology, 2014, 50, 534-544.	1.9	349
143	Long-term cerebral consequences of sepsis. Lancet Neurology, The, 2014, 13, 630-636.	4.9	273
144	IL-17A promotes myelin loss and inflammatory response during Cuprizone-induced demyelination. Journal of Neuroimmunology, 2014, 275, 110.	1.1	1

#	Article	IF	CITATIONS
145	Sepsis-associated encephalopathy versus sepsis-induced encephalopathy–Authors' reply. Lancet Neurology, The, 2014, 13, 968-969.	4.9	9
146	Investigation of the role of rare TREM2 variants in frontotemporal dementia subtypes. Neurobiology of Aging, 2014, 35, 2657.e13-2657.e19.	1.5	34
147	Innate immune activation in neurodegenerative disease. Nature Reviews Immunology, 2014, 14, 463-477.	10.6	1,053
148	Truncated and modified amyloid-beta species. Alzheimer's Research and Therapy, 2014, 6, 28.	3.0	233
149	Rare mutations in SQSTM1 modify susceptibility to frontotemporal lobar degeneration. Acta Neuropathologica, 2014, 128, 397-410.	3.9	93
150	Common variants in the HLA-DQ region confer susceptibility to idiopathic achalasia. Nature Genetics, 2014, 46, 901-904.	9.4	104
151	ADO: A disease ontology representing the domain knowledge specific to Alzheimer's disease. Alzheimer's and Dementia, 2014, 10, 238-246.	0.4	77
152	Gray matter atrophy pattern in elderly with subjective memory impairment. Alzheimer's and Dementia, 2014, 10, 99-108.	0.4	129
153	Selective Loss of Noradrenaline Exacerbates Early Cognitive Dysfunction and Synaptic Deficits in APP/PS1 Mice. Biological Psychiatry, 2013, 73, 454-463.	0.7	95
154	Targeting norepinephrine in mild cognitive impairment and Alzheimer's disease. Alzheimer's Research and Therapy, 2013, 5, 21.	3.0	124
155	Imaging microglial activation and glucose consumption in a mouse model of Alzheimer's disease. Neurobiology of Aging, 2013, 34, 351-354.	1.5	52
156	NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature, 2013, 493, 674-678.	13.7	2,063
157	A Panâ€ <scp>E</scp> uropean Study of the <i>C9orf72</i> Repeat Associated with <scp>FTLD</scp> : Geographic Prevalence, Genomic Instability, and Intermediate Repeats. Human Mutation, 2013, 34, 363-373.	1.1	247
158	Long-term neuromuscular sequelae of critical illness. Journal of Neurology, 2013, 260, 151-157.	1.8	45
159	Persistent cognitive impairment, hippocampal atrophy and EEG changes in sepsis survivors. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 62-69.	0.9	341
160	The AD-CSF-Index Discriminates Alzheimer's Disease Patients from Healthy Controls: A Validation Study. Journal of Alzheimer's Disease, 2013, 36, 67-77.	1.2	53
161	Clinical Symptoms and Risk Factors in Cerebral Microangiopathy Patients. PLoS ONE, 2013, 8, e53455.	1.1	44
162	CNS-Targeted Production of IL-17A Induces Glial Activation, Microvascular Pathology and Enhances the Neuroinflammatory Response to Systemic Endotoxemia. PLoS ONE, 2013, 8, e57307.	1.1	60

#	Article	IF	CITATIONS
163	TLR2 Is a Primary Receptor for Alzheimer's Amyloid β Peptide To Trigger Neuroinflammatory Activation. Journal of Immunology, 2012, 188, 1098-1107.	0.4	346
164	PPARÎ ³ /RXRα-Induced and CD36-Mediated Microglial Amyloid-Î ² Phagocytosis Results in Cognitive Improvement in Amyloid Precursor Protein/Presenilin 1 Mice. Journal of Neuroscience, 2012, 32, 17321-17331.	1.7	277
165	Mrp14 Deficiency Ameliorates Amyloid \hat{I}^2 Burden by Increasing Microglial Phagocytosis and Modulation of Amyloid Precursor Protein Processing. Journal of Neuroscience, 2012, 32, 17824-17829.	1.7	60
166	A Randomized, Double Blind, Placebo-Controlled Trial of Pioglitazone in Combination with Riluzole in Amyotrophic Lateral Sclerosis. PLoS ONE, 2012, 7, e37885.	1.1	125
167	Glial cells in (patho)physiology. Journal of Neurochemistry, 2012, 121, 4-27.	2.1	460
168	Nitric Oxide Decreases the Enzymatic Activity of Insulin Degrading Enzyme in APP/PS1 Mice. Journal of NeuroImmune Pharmacology, 2012, 7, 165-172.	2.1	24
169	Microglial activation in a neuroinflammational animal model of schizophrenia — a pilot study. Schizophrenia Research, 2011, 131, 96-100.	1.1	158
170	Opposing Roles for CXCR3 Signaling in Central Nervous System Versus Ocular Inflammation Mediated by the Astrocyte-Targeted Production of IL-12. American Journal of Pathology, 2011, 179, 2346-2359.	1.9	10
171	Nitration of Tyrosine 10 Critically Enhances Amyloid \hat{I}^2 Aggregation and Plaque Formation. Neuron, 2011, 71, 833-844.	3.8	259
172	Restraint stress increases neuroinflammation independently of amyloid β levels in amyloid precursor protein/PS1 transgenic mice. Journal of Neurochemistry, 2011, 116, 43-52.	2.1	16
173	Neuroinflammatory and behavioural changes in the Atp7B mutant mouse model of Wilson's disease. Journal of Neurochemistry, 2011, 118, 105-112.	2.1	41
174	Extracellular phosphorylation of the amyloid β-peptide promotes formation of toxic aggregates during the pathogenesis of Alzheimer's disease. EMBO Journal, 2011, 30, 2255-2265.	3.5	160
175	Impact and Therapeutic Potential of PPARs in Alzheimers Disease. Current Neuropharmacology, 2011, 9, 643-650.	1.4	99
176	Critical Role of Astroglial Apolipoprotein E and Liver X Receptor-α Expression for Microglial AÎ ² Phagocytosis. Journal of Neuroscience, 2011, 31, 7049-7059.	1.7	163
177	Distinct and Non-Redundant Roles of Microglia and Myeloid Subsets in Mouse Models of Alzheimer's Disease. Journal of Neuroscience, 2011, 31, 11159-11171.	1.7	286
178	Neuroinflammatory processes in Alzheimer's disease. Journal of Neural Transmission, 2010, 117, 919-947.	1.4	380
179	Neuroglia in neurodegeneration. Brain Research Reviews, 2010, 63, 189-211.	9.1	247
180	The other brain. Journal of Clinical Investigation, 2010, 120, 1789-1789.	3.9	7

#	Article	IF	CITATIONS
181	Statins Promote the Degradation of Extracellular Amyloid β-Peptide by Microglia via Stimulation of Exosome-associated Insulin-degrading Enzyme (IDE) Secretion. Journal of Biological Chemistry, 2010, 285, 37405-37414.	1.6	176
182	Locus ceruleus controls Alzheimer's disease pathology by modulating microglial functions through norepinephrine. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6058-6063.	3.3	408
183	Induced LC degeneration in APP/PS1 transgenic mice accelerates early cerebral amyloidosis and cognitive deficits. Neurochemistry International, 2010, 57, 375-382.	1.9	116
184	<i>NOS2</i> Gene Deficiency Protects from Sepsis-Induced Long-Term Cognitive Deficits. Journal of Neuroscience, 2009, 29, 14177-14184.	1.7	125
185	PPARÎ ³ and RXRÎ ³ ligands act synergistically as potent antineoplastic agents <i>in vitro</i> and <i>in vivo</i> glioma models. Journal of Neurochemistry, 2009, 109, 1779-1790.	2.1	55
186	αâ€secretase mediated conversion of the amyloid precursor protein derived membrane stub C99 to C83 limits Aβ generation. Journal of Neurochemistry, 2009, 111, 1369-1382.	2.1	57
187	Noradrenergic denervation facilitates the release of acetylcholine and serotonin in the hippocampus: Towards a mechanism underlying upregulations described in MCI patients. Experimental Neurology, 2009, 217, 237-239.	2.0	1
188	PPARÎ ³ Agonists as Therapeutics for the Treatment of Alzheimer's Disease. Neurotherapeutics, 2008, 5, 481-489.	2.1	254
189	Sepsis causes neuroinflammation and concomitant decrease of cerebral metabolism. Journal of Neuroinflammation, 2008, 5, 38.	3.1	223
190	The Role of Peroxisome Proliferator-Activated Receptor-γ (PPARγ) in Alzheimer's Disease. CNS Drugs, 2008, 22, 1-14.	2.7	155
191	Loss of Î ³ -Secretase Function Impairs Endocytosis of Lipoprotein Particles and Membrane Cholesterol Homeostasis. Journal of Neuroscience, 2008, 28, 12097-12106.	1.7	62
192	Noradrenaline deficiency in brain increases β-amyloid plaque burden in an animal model of Alzheimer's disease. Neurobiology of Aging, 2007, 28, 1206-1214.	1.5	168
193	Long-term cognitive impairment, neuronal loss and reduced cortical cholinergic innervation after recovery from sepsis in a rodent model. Experimental Neurology, 2007, 204, 733-740.	2.0	206
194	Imaging-Guided Gene Therapy of Experimental Gliomas. Cancer Research, 2007, 67, 1706-1715.	0.4	62
195	Drug Insight: effects mediated by peroxisome proliferator-activated receptor-γ in CNS disorders. Nature Clinical Practice Neurology, 2007, 3, 496-504.	2.7	86
196	Switching on the Lights for Gene Therapy. PLoS ONE, 2007, 2, e528.	1.1	24
197	Inflammatory processes in Alzheimer's disease. Journal of Neuroimmunology, 2007, 184, 69-91.	1.1	664
198	Reduction of Amyloid Angiopathy and Aβ Plaque Burden after Enriched Housing in TgCRND8 Mice. American Journal of Pathology, 2006, 169, 544-552.	1.9	81

#	Article	IF	CITATIONS
199	Disease-Modifying Therapies in Alzheimer???s Disease. Drugs, 2006, 66, 2075-2093.	4.9	90
200	PPARÎ ³ as a therapeutic target in central nervous system diseases. Neurochemistry International, 2006, 49, 136-144.	1.9	97
201	Contribution of inflammatory processes to Alzheimer's disease: molecular mechanisms. International Journal of Developmental Neuroscience, 2006, 24, 167-176.	0.7	375
202	Inflammation in Alzheimer's disease. Clinical Neuroscience Research, 2006, 6, 247-260.	0.8	23
203	Inhibition of in Vivo Glioma Growth and Invasion by Peroxisome Proliferator-Activated Receptor Î ³ Agonist Treatment. Molecular Pharmacology, 2006, 70, 1524-1533.	1.0	98
204	Nonsteroidal anti-inflammatory drugs repress Â-secretase gene promoter activity by the activation of PPARÂ. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 443-448.	3.3	365
205	GGA1 Is Expressed in the Human Brain and Affects the Generation of Amyloid Â-Peptide. Journal of Neuroscience, 2006, 26, 12838-12846.	1.7	82
206	Locus Ceruleus Degeneration Promotes Alzheimer Pathogenesis in Amyloid Precursor Protein 23 Transgenic Mice. Journal of Neuroscience, 2006, 26, 1343-1354.	1.7	268
207	The Oral Antidiabetic Pioglitazone Protects from Neurodegeneration and Amyotrophic Lateral Sclerosis-Like Symptoms in Superoxide Dismutase-G93A Transgenic Mice. Journal of Neuroscience, 2005, 25, 7805-7812.	1.7	196
208	Proinflammatory Stimulation and Pioglitazone Treatment Regulate Peroxisome Proliferator-Activated Receptor Î ³ Levels in Peripheral Blood Mononuclear Cells from Healthy Controls and Multiple Sclerosis Patients. Journal of Immunology, 2005, 175, 4948-4955.	0.4	103
209	Inhibition of Glycosphingolipid Biosynthesis Reduces Secretion of the β-Amyloid Precursor Protein and Amyloid β-Peptide*[boxs]. Journal of Biological Chemistry, 2005, 280, 28110-28117.	1.6	115
210	Acute treatment with the PPARγ agonist pioglitazone and ibuprofen reduces glial inflammation and Aβ1–42 levels in APPV717I transgenic mice. Brain, 2005, 128, 1442-1453.	3.7	522
211	The Nonthiazolidinedione Tyrosine-Based Peroxisome Proliferator-Activated Receptor γ Ligand GW7845 Induces Apoptosis and Limits Migration and Invasion of Rat and Human Glioma Cells. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 806-813.	1.3	27
212	Systemic inflammation induces apoptosis with variable vulnerability of different brain regions. Journal of Chemical Neuroanatomy, 2005, 30, 144-157.	1.0	387
213	Protection by pioglitazone in the MPTP model of Parkinson's disease correlates with lήBα induction and block of NFήB and iNOS activation. Journal of Neurochemistry, 2004, 88, 494-501.	2.1	347
214	Anti-inflammatory and antiproliferative actions of PPAR-γ agonists on T lymphocytes derived from MS patients. Journal of Leukocyte Biology, 2004, 75, 478-485.	1.5	85
215	Antineoplastic effects of peroxisome proliferatoractivated receptor \hat{I}^3 agonists. Lancet Oncology, The, 2004, 5, 419-429.	5.1	413
216	Intrinsic regulation of brain inflammatory responses. Cellular and Molecular Neurobiology, 2003, 23, 625-635.	1.7	64

#	Article	IF	CITATIONS
217	Interleukin-1β and lipopolysaccharide decrease soluble guanylyl cyclase in brain cells: NO-independent destabilization of protein and NO-dependent decrease of mRNA. Journal of Neuroimmunology, 2003, 144, 80-90.	1.1	23
218	Noradrenergic depletion increases inflammatory responses in brain: effects on ll̂ºB and HSP70 expression. Journal of Neurochemistry, 2003, 85, 387-398.	2.1	134
219	Noradrenaline induces expression of peroxisome proliferator activated receptor gamma (PPARγ) in murine primary astrocytes and neurons. Journal of Neurochemistry, 2003, 86, 907-916.	2.1	47
220	IFN-β1a (Rebif®) Modifies the Expression of Microfilament-Associated Cell-Cell Contacts in C6 Glioma Cells. Journal of Interferon and Cytokine Research, 2003, 23, 83-89.	0.5	2
221	Nonsteroidal Anti-Inflammatory Drugs and Peroxisome Proliferator-Activated Receptor-Î ³ Agonists Modulate Immunostimulated Processing of Amyloid Precursor Protein through Regulation of Î ² -Secretase. Journal of Neuroscience, 2003, 23, 9796-9804.	1.7	347
222	Norepinephrine Increases lκBα Expression in Astrocytes. Journal of Biological Chemistry, 2002, 277, 29662-29668.	1.6	70
223	β-Amyloid Peptides Decrease Soluble Guanylyl Cyclase Expression in Astroglial Cells. Neurobiology of Disease, 2002, 10, 139-149.	2.1	43
224	Noradrenergic regulation of inflammatory gene expression in brain. Neurochemistry International, 2002, 41, 357-365.	1.9	199
225	Noradrenergic Depletion Potentiates β-Amyloid-Induced Cortical Inflammation: Implications for Alzheimer's Disease. Journal of Neuroscience, 2002, 22, 2434-2442.	1.7	231
226	Suppressive effects of ansamycins on inducible nitric oxide synthase expression and the development of experimental autoimmune encephalomyelitis. Journal of Neuroscience Research, 2002, 67, 461-470.	1.3	44
227	Induction of apoptosis in human and rat glioma by agonists of the nuclear receptor PPARÎ ³ . Journal of Neurochemistry, 2002, 81, 1052-1060.	2.1	119
228	Anti-inflammatory actions of peroxisome proliferator-activated receptor gamma agonists in Alzheimer's disease. Neurobiology of Aging, 2001, 22, 937-944.	1.5	167
229	The heat shock response reduces myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis in mice. Journal of Neurochemistry, 2001, 77, 568-579.	2.1	32
230	Role for peroxisome proliferator-activated receptor-? in Alzheimer's disease. Annals of Neurology, 2001, 49, 276-276.	2.8	53
231	Expression and function of inducible nitric oxide synthase in neurons. Journal of Neuroimmunology, 2001, 114, 8-18.	1.1	214
232	Neuronal and Glial Coexpression of Argininosuccinate Synthetase and Inducible Nitric Oxide Synthase in Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2001, 60, 906-916.	0.9	134
233	The Heat Shock Response Inhibits NF-κB Activation, Nitric Oxide Synthase Type 2 Expression, and Macrophage/Microglial Activation in Brain. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 800-811.	2.4	67
234	Peroxisome Proliferator-Activated Receptor-γ Ligands Reduce Neuronal Inducible Nitric Oxide Synthase Expression and Cell Death <i>In Vivo</i> . Journal of Neuroscience, 2000, 20, 6862-6867.	1.7	255

#	Article	IF	CITATIONS
235	Temporal, regional, and cell-specific changes of iNOS expression after intrastriatal microinjection of interferon gamma and bacterial lipopolysaccharide. Journal of Chemical Neuroanatomy, 2000, 18, 167-179.	1.0	27
236	Induction of Argininosuccinate Synthetase in Rat Brain Glial Cells after Striatal Microinjection of Immunostimulants. Journal of Cerebral Blood Flow and Metabolism, 1999, 19, 898-907.	2.4	27
237	Peroxisome proliferator-activated receptor gamma agonists protect cerebellar granule cells from cytokine-induced apoptotic cell death by inhibition of inducible nitric oxide synthase. Journal of Neuroimmunology, 1999, 100, 156-168.	1.1	146
238	Selective Potentiation of Drug Cytotoxicity by NSAID in Human Glioma Cells: The Role of COX-1 and MRP. Biochemical and Biophysical Research Communications, 1999, 259, 600-605.	1.0	55
239	Extended therapeutic window for caspase inhibition and synergy with MK-801 in the treatment of cerebral histotoxic hypoxia. Cell Death and Differentiation, 1998, 5, 847-857.	5.0	93
240	Synthesis and biological effects of NO in malignant glioma cells: modulation by cytokines including CD95L and TGF-β dexamethasone, and p53 gene transfer. Oncogene, 1998, 17, 2323-2332.	2.6	30
241	Induction of Nitric Oxide Synthase and Nitric Oxideâ€Mediated Apoptosis in Neuronal PC12 Cells After Stimulation with Tumor Necrosis FActorâ€Î±/Lipopolysaccharide. Journal of Neurochemistry, 1998, 71, 88-94.	2.1	186
242	Differential interaction of competitive NMDA and AMPA antagonists with selective dopamine D-1 and D-2 agonists in a rat model of Parkinson's disease. Synapse, 1997, 26, 381-391.	0.6	34