Stephan Irle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9572715/publications.pdf

Version: 2024-02-01

277 14,688 61
papers citations h-inde

305

docs citations

h-index g-index

305
14404
times ranked citing authors

24915

305 all docs

#	Article	IF	CITATIONS
1	Recent developments in the general atomic and molecular electronic structure system. Journal of Chemical Physics, 2020, 152, 154102.	1.2	734
2	DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. Journal of Chemical Physics, 2020, 152, 124101.	1.2	589
3	Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds. Nature Communications, 2013, 4, 2736.	5.8	528
4	In Operando X-ray Absorption Fine Structure Studies of Polyoxometalate Molecular Cluster Batteries: Polyoxometalates as Electron Sponges. Journal of the American Chemical Society, 2012, 134, 4918-4924.	6.6	385
5	Highâ€Rate Chargeâ€Carrier Transport in Porphyrin Covalent Organic Frameworks: Switching from Hole to Electron to Ambipolar Conduction. Angewandte Chemie - International Edition, 2012, 51, 2618-2622.	7.2	344
6	An <i>n</i> -Channel Two-Dimensional Covalent Organic Framework. Journal of the American Chemical Society, 2011, 133, 14510-14513.	6.6	330
7	Locking Covalent Organic Frameworks with Hydrogen Bonds: General and Remarkable Effects on Crystalline Structure, Physical Properties, and Photochemical Activity. Journal of the American Chemical Society, 2015, 137, 3241-3247.	6.6	320
8	Catalytic covalent organic frameworks via pore surface engineering. Chemical Communications, 2014, 50, 1292-1294.	2.2	292
9	Rational design of crystalline supermicroporous covalent organic frameworks with triangular topologies. Nature Communications, 2015, 6, 7786.	5.8	274
10	Charge Dynamics in A Donor–Acceptor Covalent Organic Framework with Periodically Ordered Bicontinuous Heterojunctions. Angewandte Chemie - International Edition, 2013, 52, 2017-2021.	7.2	263
11	An Ambipolar Conducting Covalent Organic Framework with Selfâ€Sorted and Periodic Electron Donorâ€Acceptor Ordering. Advanced Materials, 2012, 24, 3026-3031.	11.1	258
12	Control of Crystallinity and Porosity of Covalent Organic Frameworks by Managing Interlayer Interactions Based on Self-Complementary π-Electronic Force. Journal of the American Chemical Society, 2013, 135, 546-549.	6.6	257
13	Combined experimental and theoretical studies on the photophysical properties of cycloparaphenylenes. Organic and Biomolecular Chemistry, 2012, 10, 5979.	1.5	248
14	The C60Formation Puzzle "Solved― QM/MD Simulations Reveal the Shrinking Hot Giant Road of the Dynamic Fullerene Self-Assembly Mechanism. Journal of Physical Chemistry B, 2006, 110, 14531-14545.	1.2	232
15	Creation of Superheterojunction Polymers via Direct Polycondensation: Segregated and Bicontinuous Donor–Acceptor π-Columnar Arrays in Covalent Organic Frameworks for Long-Lived Charge Separation. Journal of the American Chemical Society, 2015, 137, 7817-7827.	6.6	213
16	Parameter Calibration of Transition-Metal Elements for the Spin-Polarized Self-Consistent-Charge Density-Functional Tight-Binding (DFTB) Method:  Sc, Ti, Fe, Co, and Ni. Journal of Chemical Theory and Computation, 2007, 3, 1349-1367.	2.3	208
17	A π-Conjugated System with Flexibility and Rigidity That Shows Environment-Dependent RGB Luminescence. Journal of the American Chemical Society, 2013, 135, 8842-8845.	6.6	191
18	Light-Emitting Covalent Organic Frameworks: Fluorescence Improving via Pinpoint Surgery and Selective Switch-On Sensing of Anions. Journal of the American Chemical Society, 2018, 140, 12374-12377.	6.6	191

#	Article	IF	Citations
19	Sensitivity of Ammonia Interaction with Single-Walled Carbon Nanotube Bundles to the Presence of Defect Sites and Functionalities. Journal of the American Chemical Society, 2005, 127, 10533-10538.	6.6	167
20	Super-Reduced Polyoxometalates: Excellent Molecular Cluster Battery Components and Semipermeable Molecular Capacitors. Journal of the American Chemical Society, 2014, 136, 9042-9052.	6.6	162
21	Twoâ€Dimensional Tetrathiafulvalene Covalent Organic Frameworks: Towards Latticed Conductive Organic Salts. Chemistry - A European Journal, 2014, 20, 14608-14613.	1.7	147
22	Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19. Journal of Chemical Information and Modeling, 2020, 60, 5832-5852.	2.5	134
23	Performance of the DFTB method in comparison to DFT and semiempirical methods for geometries and energies of C20–C86 fullerene isomers. Chemical Physics Letters, 2005, 412, 210-216.	1.2	132
24	A New Triazineâ€Based Covalent Organic Framework for Highâ€Performance Capacitive Energy Storage. ChemSusChem, 2017, 10, 921-929.	3.6	132
25	Large pore donor–acceptor covalent organic frameworks. Chemical Science, 2013, 4, 4505.	3.7	127
26	A Strap Strategy for Construction of an Excitedâ€State Intramolecular Proton Transfer (ESIPT) System with Dual Fluorescence. Angewandte Chemie - International Edition, 2014, 53, 8231-8235.	7.2	120
27	Mechanisms of Single-Walled Carbon Nanotube Nucleation, Growth, and Healing Determined Using QM/MD Methods. Accounts of Chemical Research, 2010, 43, 1375-1385.	7.6	117
28	Designed synthesis of double-stage two-dimensional covalent organic frameworks. Scientific Reports, 2015, 5, 14650.	1.6	107
29	Stacked antiaromatic porphyrins. Nature Communications, 2016, 7, 13620.	5 . 8	105
30	Light-melt adhesive based on dynamic carbon frameworks in a columnar liquid-crystal phase. Nature Communications, 2016, 7, 12094.	5 . 8	103
31	A femtomolar-range suicide germination stimulant for the parasitic plant <i>Striga hermonthica</i> Science, 2018, 362, 1301-1305.	6.0	101
32	Rapid Growth of a Single-Walled Carbon Nanotube on an Iron Cluster: Density-Functional Tight-Binding Molecular Dynamics Simulations. ACS Nano, 2008, 2, 1437-1444.	7.3	98
33	Molecular Simulation of Water and Hydration Effects in Different Environments: Challenges and Developments for DFTB Based Models. Journal of Physical Chemistry B, 2014, 118, 11007-11027.	1.2	97
34	Quantum Chemical Molecular Dynamics Simulation of Single-Walled Carbon Nanotube Cap Nucleation on an Iron Particle. ACS Nano, 2009, 3, 3413-3420.	7.3	96
35	Template Effect in the Competition between Haeckelite and Graphene Growth on Ni(111): Quantum Chemical Molecular Dynamics Simulations. Journal of the American Chemical Society, 2011, 133, 18837-18842.	6.6	95
36	QM/MD Simulation of SWNT Nucleation on Transition-Metal Carbide Nanoparticles. Journal of the American Chemical Society, 2010, 132, 15699-15707.	6.6	93

#	Article	IF	Citations
37	Insights into carbon nanotube and graphene formation mechanisms from molecular simulations: a review. Reports on Progress in Physics, 2015, 78, 036501.	8.1	93
38	Evidence for a New Twoâ€Dimensional C ₄ Hâ€Type Polymer Based on Hydrogenated Graphene. Advanced Materials, 2011, 23, 4497-4503.	11.1	90
39	Growth of carbon nanotubes via twisted graphene nanoribbons. Nature Communications, 2013, 4, 2548.	5.8	89
40	Comparison of Interfacial Electron Transfer through Carboxylate and Phosphonate Anchoring Groupsâ€. Journal of Physical Chemistry A, 2007, 111, 6832-6842.	1.1	88
41	Three pillars for achieving quantum mechanical molecular dynamics simulations of huge systems: Divideâ€andâ€conquer, densityâ€functional tightâ€binding, and massively parallel computation. Journal of Computational Chemistry, 2016, 37, 1983-1992.	1.5	88
42	From C2Molecules to Self-Assembled Fullerenes in Quantum Chemical Molecular Dynamics. Nano Letters, 2003, 3, 1657-1664.	4.5	87
43	Dimerization-Initiated Preferential Formation of Coronene-Based Graphene Nanoribbons in Carbon Nanotubes. Journal of Physical Chemistry C, 2012, 116, 15141-15145.	1.5	87
44	Density-Functional Tight-Binding Combined with the Fragment Molecular Orbital Method. Journal of Chemical Theory and Computation, 2014, 10, 4801-4812.	2.3	87
45	Hybridization of a Flexible Cyclooctatetraene Core and Rigid Aceneimide Wings for Multiluminescent Flapping π Systems. Chemistry - A European Journal, 2014, 20, 2193-2200.	1.7	82
46	Boosting electrosynthesis of ammonia on surface-engineered MXene Ti3C2. Nano Energy, 2020, 72, 104681.	8.2	82
47	Growth of Linear Carbon Chains inside Thin Double-Wall Carbon Nanotubes. Journal of Physical Chemistry C, 2011, 115, 13166-13170.	1.5	81
48	Nearly Exclusive Growth of Small Diameter Semiconducting Single-Wall Carbon Nanotubes from Organic Chemistry Synthetic End-Cap Molecules. Nano Letters, 2015, 15, 586-595.	4.5	81
49	Origin of the size-dependent fluorescence blueshift in [n]cycloparaphenylenes. Chemical Science, 2013, 4, 187-195.	3.7	79
50	A New Porous Polymer for Highly Efficient Capacitive Energy Storage. ACS Sustainable Chemistry and Engineering, 2018, 6, 202-209.	3.2	78
51	Quantum Chemical Study of the Dissociative Adsorption of OH and H2O on Pristine and Defective Graphite (0001) Surfaces: Reaction Mechanisms and Kinetics. Journal of Physical Chemistry C, 2007, 111, 1355-1365.	1.5	77
52	Reactive Molecular Dynamics Simulation of Fullerene Combustion Synthesis: ReaxFF vs DFTB Potentials. Journal of Chemical Theory and Computation, 2011, 7, 2040-2048.	2.3	74
53	Analytical second-order geometrical derivatives of energy for the self-consistent-charge density-functional tight-binding method. Journal of Chemical Physics, 2004, 121, 5163-5170.	1.2	71
54	CH Activation Generates Periodâ€Shortening Molecules That Target Cryptochrome in the Mammalian Circadian Clock. Angewandte Chemie - International Edition, 2015, 54, 7193-7197.	7.2	71

#	Article	IF	Citations
55	Comparison of Geometric, Electronic, and Vibrational Properties for Isomers of Small Fullerenes C20â^'C36â€. Journal of Physical Chemistry A, 2007, 111, 6649-6657.	1.1	69
56	SWNT Nucleation from Carbon-Coated SiO ₂ Nanoparticles via a Vaporâ^'Solidâ^'Solid Mechanism. Journal of the American Chemical Society, 2011, 133, 621-628.	6.6	67
57	Topologyâ€Templated Synthesis of Crystalline Porous Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2020, 59, 12162-12169.	7.2	66
58	Design of tough adhesive from commodity thermoplastics through dynamic crosslinking. Science Advances, 2021, 7, eabk2451.	4.7	66
59	Directab initiovariational calculation of vibrational energies of the H2Oâ< Clâ complex and resolution of experimental differences. Journal of Chemical Physics, 2000, 113, 8401-8403.	1.2	64
60	Zwitterionic Ladder Stilbenes with Phosphonium and Borate Bridges: Intramolecular Cascade Cyclization and Structure–Photophysical Properties Relationship. Organometallics, 2011, 30, 3870-3879.	1.1	63
61	Rhl-catalyzed aldol-type reaction of organonitriles under mild conditions. Chemical Communications, 2008, , 2212.	2.2	62
62	Electrically Activated Conductivity and White Light Emission of a Hydrocarbon Nanoring–lodine Assembly. Angewandte Chemie - International Edition, 2017, 56, 11196-11202.	7.2	62
63	TICT fluorescence of N-borylated 2,5-diarylpyrroles: a gear like dual motion in the excited state. Dalton Transactions, 2013, 42, 620-624.	1.6	61
64	Parametrization and Benchmark of Long-Range Corrected DFTB2 for Organic Molecules. Journal of Chemical Theory and Computation, 2018, 14, 115-125.	2.3	60
65	Nature of Reactive Hydrogen for Ammonia Synthesis over a Ru/C12A7 Electride Catalyst. Journal of the American Chemical Society, 2020, 142, 7655-7667.	6.6	59
66	Defect Healing during Single-Walled Carbon Nanotube Growth: A Density-Functional Tight-Binding Molecular Dynamics Investigation. Journal of Physical Chemistry C, 2009, 113, 20198-20207.	1.5	58
67	Direct evidence of active and inactive phases of Fe catalyst nanoparticles for carbon nanotube formation. Journal of Catalysis, 2014, 319, 54-60.	3.1	57
68	A Macrocyclic Fluorophore Dimer with Flexible Linkers: Bright Excimer Emission with a Long Fluorescence Lifetime. Angewandte Chemie - International Edition, 2016, 55, 7131-7135.	7.2	55
69	Automatized Parameterization of DFTB Using Particle Swarm Optimization. Journal of Chemical Theory and Computation, 2016, 12, 53-64.	2.3	55
70	Constraint-induced structural deformation of planarized triphenylboranes in the excited state. Chemical Science, 2014, 5, 1296-1304.	3.7	54
71	Pre-Sodiated Ti ₃ C ₂ T _{<i>x</i>} MXene Structure and Behavior as Electrode for Sodium-Ion Capacitors. ACS Nano, 2021, 15, 2994-3003.	7.3	54
72	Combined ab initio and density functional study on polaron to bipolaron transitions in oligophenyls and oligothiophenes. Journal of Chemical Physics, 1997, 107, 3021-3031.	1.2	52

#	Article	IF	CITATIONS
73	Water Clusters on Graphite:Â Methodology for Quantum Chemical A Priori Prediction of Reaction Rate Constants. Journal of Physical Chemistry A, 2005, 109, 9563-9572.	1.1	52
74	Milestones in molecular dynamics simulations of single-walled carbon nanotube formation: A brief critical review. Nano Research, 2009, 2, 755.	5.8	52
75	Single-walled Carbon Nanotube Growth from Chiral Carbon Nanorings: Prediction of Chirality and Diameter Influence on Growth Rates. Journal of the American Chemical Society, 2012, 134, 15887-15896.	6.6	52
76	Cycloparaphenylene as a molecular porous carbon solid with uniform pores exhibiting adsorption-induced softness. Chemical Science, 2016, 7, 4204-4210.	3.7	52
77	Near infrared two-photon-excited and -emissive dyes based on a strapped excited-state intramolecular proton-transfer (ESIPT) scaffold. Chemical Science, 2018, 9, 2666-2673.	3.7	52
78	The internal coordinate path Hamiltonian; application to methanol and malonaldehyde. Molecular Physics, 2003, 101, 3513-3525.	0.8	51
79	Coupled Cluster and Density Functional Theory Calculations of Atomic Hydrogen Chemisorption on Pyrene and Coronene as Model Systems for Graphene Hydrogenation. Journal of Physical Chemistry A, 2012, 116, 7154-7160.	1.1	51
80	Formation of Fullerene Molecules from Carbon Nanotubes:Â A Quantum Chemical Molecular Dynamics Study. Nano Letters, 2003, 3, 465-470.	4.5	50
81	Substituent Effects of -NO and -NO2, Groups in Aromatic Systems. Journal of Organic Chemistry, 1995, 60, 6744-6755.	1.7	49
82	Electrical Switching Behavior of a [60]Fullereneâ€Based Molecular Wire Encapsulated in a Syndiotactic Poly(methyl methacrylate) Helical Cavity. Angewandte Chemie - International Edition, 2013, 52, 1049-1053.	7.2	49
83	Development of Smallâ€Molecule Cryptochrome Stabilizer Derivatives as Modulators of the Circadian Clock. ChemMedChem, 2015, 10, 1489-1497.	1.6	49
84	Ruthenium Nanoparticle-Decorated Porous Organic Network for Direct Hydrodeoxygenation of Long-Chain Fatty Acids to Alkanes. ACS Sustainable Chemistry and Engineering, 2018, 6, 1610-1619.	3.2	48
85	Hot Giant Fullerenes Eject <i>and</i> Capture C ₂ Molecules: QM/MD Simulations with Constant Density. Journal of Physical Chemistry C, 2011, 115, 22707-22716.	1.5	47
86	Quantum chemical simulations reveal acetylene-based growth mechanisms in the chemical vapor deposition synthesis of carbon nanotubes. Carbon, 2014, 72, 22-37.	5.4	47
87	Quantum Chemical Molecular Dynamics Simulations of Dynamic Fullerene Self-Assembly in Benzene Combustion. ACS Nano, 2009, 3, 2241-2257.	7.3	46
88	Regioselectivity control of graphene functionalization by ripples. Physical Chemistry Chemical Physics, 2011, 13, 19449.	1.3	46
89	Anabinitioinvestigation of the chargeâ€transfer complexes of alkali atoms with oligo (α,α′) thiophenes and oligoparaphenylenes: A model calculation on polaronic and bipolaronic defect structures. Journal of Chemical Physics, 1995, 103, 1508-1522.	1.2	45
90	Large-Scale Quantum-Mechanical Molecular Dynamics Simulations Using Density-Functional Tight-Binding Combined with the Fragment Molecular Orbital Method. Journal of Physical Chemistry Letters, 2015, 6, 5034-5039.	2.1	45

#	Article	IF	CITATIONS
91	Density-functional tight-binding molecular dynamics simulations of SWCNT growth by surface carbon diffusion on an iron cluster. Carbon, 2009, 47, 1270-1275.	5.4	44
92	Hydroxide Anion Transport in Covalent Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 8970-8975.	6.6	44
93	Quantum Chemical Molecular Dynamics Model Study of Fullerene Formation from Open-Ended Carbon Nanotubesâ€. Journal of Physical Chemistry A, 2004, 108, 3182-3194.	1.1	43
94	Towards formation of buckminsterfullerene C60 in quantum chemical molecular dynamics. Journal of Chemical Physics, 2005, 122, 014708.	1.2	43
95	Comparison of single-walled carbon nanotube growth from Fe and Ni nanoparticles using quantum chemical molecular dynamics methods. Carbon, 2010, 48, 3014-3026.	5.4	42
96	Polyyne Chain Growth and Ring Collapse Drives Ni-Catalyzed SWNT Growth: A QM/MD Investigation. Journal of Physical Chemistry C, 2010, 114, 8206-8211.	1.5	42
97	Quantum chemical investigation of epoxide and ether groups in graphene oxide and their vibrational spectra. Physical Chemistry Chemical Physics, 2013, 15, 3725.	1.3	42
98	Quantum Chemical Prediction of Reaction Pathways and Rate Constants for Dissociative Adsorption of COxand NOxon the Graphite (0001) Surface. Journal of Physical Chemistry B, 2006, 110, 21135-21144.	1.2	41
99	Modeling carbon nanostructures with the self-consistent charge density-functional tight-binding method: Vibrational spectra and electronic structure of C28, C60, and C70. Journal of Chemical Physics, 2006, 125, 214706.	1.2	40
100	Temperature Dependence of Iron-Catalyzed Continued Single-Walled Carbon Nanotube Growth Rates: Density Functional Tight-Binding Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2009, 113, 159-169.	1.5	40
101	Fullerenes: formation, stability, and reactivity. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2011, 1, 350-367.	6.2	40
102	Sub-surface nucleation of graphene precursors near a Ni(111) step-edge. Chemical Communications, 2012, 48, 7937.	2.2	40
103	Graphene nucleation on a surface-molten copper catalyst: quantum chemical molecular dynamics simulations. Chemical Science, 2014, 5, 3493-3500.	3.7	40
104	Artificial neural network correction for density-functional tight-binding molecular dynamics simulations. MRS Communications, 2019, 9, 867-873.	0.8	40
105	Nucleation of Graphene Precursors on Transition Metal Surfaces: Insights from Theoretical Simulations. Journal of Physical Chemistry C, 2013, 117, 14858-14864.	1.5	39
106	Two-dimensional artificial light-harvesting antennae with predesigned high-order structure and robust photosensitising activity. Scientific Reports, 2016, 6, 32944.	1.6	39
107	Synthesis of 1â€Phosphaâ€2â€boraacenaphthenes: Reductive 1,2â€Aryl Migration of 1â€Diarylborylâ€8â€dichlorophosphinonaphthalenes. Angewandte Chemie - International Edition, 2011, 50, 10940-10943.	7.2	38
108	Dynamics of Local Chirality during SWCNT Growth: Armchair versus Zigzag Nanotubes. Journal of the American Chemical Society, 2012, 134, 9311-9319.	6.6	38

#	Article	IF	CITATIONS
109	Kinetic Isotope Effect in the Hydrogenation and Deuteration of Graphene. Advanced Functional Materials, 2013, 23, 1628-1635.	7.8	38
110	Origin of the Linear Relationship between CH2/NH/Oâ^SWNT Reaction Energies and Sidewall Curvature: Armchair Nanotubes. Journal of the American Chemical Society, 2006, 128, 15117-15126.	6.6	37
111	Stochastic structure determination for conformationally flexible heterogenous molecular clusters: Application to ionic liquids. Journal of Computational Chemistry, 2013, 34, 2591-2600.	1.5	37
112	Third-order density-functional tight-binding combined with the fragment molecular orbital method. Chemical Physics Letters, 2015, 636, 90-96.	1.2	37
113	Dipole moments of highly vibrationally excited HCN: Theoretical prediction of an experimental diagnostic for delocalized states. Journal of Chemical Physics, 2001, 114, 7923-7934.	1.2	36
114	Quantum Chemical Molecular Dynamics Study of "Shrinking" of Hot Giant Fullerenes. Journal of Nanoscience and Nanotechnology, 2007, 7, 1662-1669.	0.9	36
115	Convergence in the Evolution of Nanodiamond Raman Spectra with Particle Size: A Theoretical Investigation. ACS Nano, 2010, 4, 4475-4486.	7. 3	36
116	Dramatic Reduction of IR Vibrational Cross Sections of Molecules Encapsulated in Carbon Nanotubes. Journal of the American Chemical Society, 2011, 133, 8191-8198.	6.6	36
117	Fabrication and Optical Probing of Highly Extended, Ultrathin Graphene Nanoribbons in Carbon Nanotubes. ACS Nano, 2015, 9, 5034-5040.	7.3	36
118	The Fragment Molecular Orbital Method Based on Long-Range Corrected Density-Functional Tight-Binding. Journal of Chemical Theory and Computation, 2019, 15, 3008-3020.	2.3	35
119	Theoretical Study of Structure and Raman Spectra for Models of Carbon Nanotubes in Their Pristine and Oxidized Forms. Journal of Physical Chemistry A, 2002, 106, 11973-11980.	1.1	34
120	A π-stacked phenylacetylene dimer. Physical Chemistry Chemical Physics, 2011, 13, 16706.	1.3	33
121	Substituent Effects on Twisted Internal Charge Transfer Excited States of <i>N-</i> Borylated Carbazoles and (Diphenylamino)boranes. Journal of Physical Chemistry A, 2012, 116, 1151-1158.	1.1	33
122	Quantum Dynamics Simulations Reveal Vibronic Effects on the Optical Properties of [<i>n</i>]Cycloparaphenylenes. Journal of Chemical Theory and Computation, 2014, 10, 4025-4036.	2.3	32
123	Molecular dynamics simulation of hydrogen atom sputtering on the surface of graphite with defect and edge. Journal of Nuclear Materials, 2009, 390-391, 183-187.	1.3	31
124	Interaction of Acetone with Single Wall Carbon Nanotubes at Cryogenic Temperatures: A Combined Temperature Programmed Desorption and Theoretical Study. Langmuir, 2008, 24, 7848-7856.	1.6	30
125	Single-walled carbon nanotube growth from a cap fragment on an iron nanoparticle: Density-functional tight-binding molecular dynamics simulations. Physical Review B, 2009, 79, .	1.1	30
126	Collision-induced fusion of twoC60fullerenes: Quantum chemical molecular dynamics simulations. Physical Review B, 2010, 82, .	1.1	30

#	Article	IF	Citations
127	Simulations of the synthesis of boron-nitride nanostructures in a hot, high pressure gas volume. Chemical Science, 2018, 9, 3803-3819.	3.7	28
128	ONIOM Study of Ring Opening and Metal Insertion Reactions with Derivatives of C60:  Role of Aromaticity in the Opening Process. Journal of Physical Chemistry A, 2002, 106, 680-688.	1.1	27
129	Quantum Chemical Prediction of Pathways and Rate Constants for Reactions of CO and CO2 with Vacancy Defects on Graphite (0001) Surfaces. Journal of Physical Chemistry C, 2009, 113, 18772-18777.	1.5	27
130	Theoretical Insights into Chiralityâ€Controlled SWCNT Growth from a Cycloparaphenylene Template. ChemPhysChem, 2012, 13, 1479-1485.	1.0	26
131	Graphene Nucleation from Amorphous Nickel Carbides: QM/MD Studies on the Role of Subsurface Carbon Density. Journal of Physical Chemistry C, 2014, 118, 11078-11084.	1.5	26
132	Theoretical study of cellobiose hydrolysis to glucose in ionic liquids. Chemical Physics Letters, 2014, 603, 7-12.	1.2	26
133	Self-assembly of endohedral metallofullerenes: a decisive role of cooling gas and metal–carbon bonding. Nanoscale, 2016, 8, 3796-3808.	2.8	26
134	Polymorphism of [6]Cycloparaphenylene for Packing Structure-dependent Host–Guest Interaction. Chemistry Letters, 2017, 46, 855-857.	0.7	26
135	Formation mechanism of polycyclic aromatic hydrocarbons in benzene combustion: Quantum chemical molecular dynamics simulations. Journal of Chemical Physics, 2010, 132, 224303.	1.2	25
136	Quantum Chemical Simulation of Carbon Nanotube Nucleation on Al2O3 Catalysts via CH4 Chemical Vapor Deposition. Journal of the American Chemical Society, 2015, 137, 9281-9288.	6.6	25
137	Theoretical Investigation of the Structures and Dynamics of Crystalline Molecular Gyroscopes. Journal of Physical Chemistry C, 2012, 116, 24845-24854.	1.5	24
138	Atom-by-atom simulations of graphene growth by decomposition of SiC (0001): Impact of the substrate steps. Applied Physics Letters, 2013, 103, 141602.	1.5	24
139	Step-edge self-assembly during graphene nucleation on a nickel surface: QM/MD simulations. Nanoscale, 2014, 6, 140-144.	2.8	24
140	Glucose transformation to 5â€hydroxymethylfurfural in acidic ionic liquid: A quantum mechanical study. Journal of Computational Chemistry, 2016, 37, 327-335.	1.5	24
141	Modeling Charge Transfer in Fullerene Collisions via Real-Time Electron Dynamics. Journal of Physical Chemistry Letters, 2012, 3, 1536-1542.	2.1	23
142	Water-mediated deracemization of a bisporphyrin helicate assisted by diastereoselective encapsulation of chiral guests. Nature Communications, 2019, 10, 1457.	5.8	23
143	An ab initio study of the vibrational spectra of Li-doped thiophene, bithiophene, benzene and biphenyl as model systems for (bi)polaronic defects. Computational and Theoretical Chemistry, 1996, 364, 15-31.	1.5	22
144	A Macrocyclic Fluorophore Dimer with Flexible Linkers: Bright Excimer Emission with a Long Fluorescence Lifetime. Angewandte Chemie, 2016, 128, 7247-7251.	1.6	22

#	Article	IF	CITATIONS
145	Cryptic bioactivity capacitated by synthetic hybrid plant peptides. Nature Communications, 2017, 8, 14318.	5.8	22
146	Theory and experiment agree: Single-walled carbon nanotube caps grow catalyst-free with chirality preference on a SiC surface. Journal of Chemical Physics, 2006, 125, 044702.	1.2	21
147	Carbon Nanotubes Grow on the C Face of SiC (0001Ì,,) during Sublimation Decomposition:  Quantum Chemical Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2007, 111, 12960-12972.	1.5	21
148	Delocalization errors in a hubbardâ€like model: Consequences for densityâ€functional tightâ€binding calculations of molecular systems. International Journal of Quantum Chemistry, 2012, 112, 1701-1711.	1.0	21
149	Comparison of geometric, electronic, and vibrational properties for all pentagon/hexagonâ€bearing isomers of fullerenes C ₃₈ , C ₄₀ , and C ₄₂ . International Journal of Quantum Chemistry, 2009, 109, 1999-2011.	1.0	20
150	Structure of Tm2 and Tm2C2 encapsulated in low-symmetry C82(Cs(6)) fullerene cage by single crystal X-ray diffraction. Chemical Physics Letters, 2014, 600, 38-42.	1.2	20
151	QM/MD studies on graphene growth from small islands on the Ni(111) surface. Nanoscale, 2016, 8, 3067-3074.	2.8	20
152	Topologyâ€Templated Synthesis of Crystalline Porous Covalent Organic Frameworks. Angewandte Chemie, 2020, 132, 12260-12267.	1.6	20
153	Temperature and pressure dependence of molecular adsorption on single wall carbon nanotubes and the existence of an "adsorption/desorption pressure gap― Carbon, 2010, 48, 1867-1875.	5.4	19
154	Density-functional tight-binding for phosphine-stabilized nanoscale gold clusters. Chemical Science, 2020, 11, 13113-13128.	3.7	19
155	Strain-Induced Growth of Twisted Bilayers during the Coalescence of Monolayer MoS ₂ Crystals. ACS Nano, 2021, 15, 4504-4517.	7.3	19
156	Relative Isomer Abundance of Fullerenes and Carbon Nanotubes Correlates with Kinetic Stability. Physical Review Letters, 2011, 107, 175506.	2.9	18
157	Accurate Free Energies for Complex Condensed-Phase Reactions Using an Artificial Neural Network Corrected DFTB/MM Methodology. Journal of Chemical Theory and Computation, 2022, 18, 1213-1226.	2.3	18
158	A molecular orbital study on H and H2 elimination pathways from methane, ethane, and propane. Journal of Chemical Physics, 2000, 113, 6139-6148.	1.2	17
159	Carbon Spiral Helix: A Nanoarchitecture Derived from Monovacancy Defects in Graphene. Angewandte Chemie - International Edition, 2010, 49, 3200-3202.	7.2	17
160	Electronic properties of hydrogenated quasiâ€freeâ€standing graphene. Physica Status Solidi (B): Basic Research, 2011, 248, 2639-2643.	0.7	17
161	Revealing the Dual Role of Hydrogen for Growth Inhibition and Defect Healing in Polycyclic Aromatic Hydrocarbon Formation: QM/MD Simulations. Journal of Physical Chemistry Letters, 2013, 4, 2323-2327.	2.1	17
162	Critical interpretation of CH– and OH– stretching regions for infrared spectra of methanol clusters (CH3OH) <i>n</i> (<i>n</i> = 2–5) using self-consistent-charge density functional tight-binding molecular dynamics simulations. Journal of Chemical Physics, 2014, 141, 094303.	1.2	17

#	Article	IF	CITATIONS
163	Electrically Activated Conductivity and White Light Emission of a Hydrocarbon Nanoring–lodine Assembly. Angewandte Chemie, 2017, 129, 11348-11354.	1.6	17
164	Low-energy hydrogen uptake by small-cage Cn and Cn-1B fullerenes. Carbon, 2018, 134, 189-198.	5.4	17
165	Electronic Structure and Properties of Trihalogen Cations $X3+$ and $XY2+(X, Y = F, Cl, Br, I)$. Inorganic Chemistry, 1996, 35, 100-109.	1.9	16
166	THEORY–EXPERIMENT RELATIONSHIP OF THE "SHRINKING HOT GIANT" ROAD OF DYNAMIC FULLERENE SELF-ASSEMBLY IN HOT CARBON VAPOR. Nano, 2007, 02, 21-30.	0.5	16
167	Effects of Molecular Dynamics Thermostats on Descriptions of Chemical Nonequilibrium. Journal of Chemical Theory and Computation, 2012, 8, 4019-4028.	2.3	16
168	Theoretical Studies on Ethanol Dissociation on Iron Nanoparticles in the Early Stage of SWCNT Growth. Journal of Physical Chemistry C, 2017, 121, 2276-2284.	1.5	16
169	Multiscale Simulations on Charge Transport in Covalent Organic Frameworks Including Dynamics of Transfer Integrals from the FMO-DFTB/LCMO Approach. Journal of Physical Chemistry C, 2017, 121, 17712-17726.	1.5	16
170	Focus-Induced Photoresponse: a novel way to measure distances with photodetectors. Scientific Reports, 2018, 8, 9208.	1.6	16
171	The Mechanisms of the Reactions of W and W+with COx(x= 1, 2): A Computational Studyâ€. Journal of Physical Chemistry A, 2007, 111, 6665-6673.	1.1	15
172	Molecular and electronic structures of endohedral fullerenes, Sc ₂ C ₂ @ <i>C</i> _{3v} –C ₈₂ and Sc ₂ @ <i>C</i> _{3v} –C ₈₂ : Benchmark for SCCâ€DFTB and proposal of new inner cluster structures. Physica Status Solidi (B): Basic Research, 2012, 249, 324-334.	0.7	15
173	A Benzophosphole <i>P</i> Oxide with an Electron-Donating Group at 3-Position: Enhanced Fluorescence in Polar Solvents. Bulletin of the Chemical Society of Japan, 2015, 88, 1545-1552.	2.0	15
174	Doubleâ€Stranded Helical Oligomers Covalently Bridged by Rotary Cyclic Boronate Esters. Chemistry - an Asian Journal, 2017, 12, 927-935.	1.7	15
175	Constructing Sulfonic Acid Functionalized Anthracene Derived Conjugated Porous Organic Polymer for Efficient Metal-Free Catalytic Acetalization of Bio-Glycerol. ChemistrySelect, 2017, 2, 4705-4716.	0.7	15
176	Fe/C Interactions During SWNT Growth with C ₂ Feedstock Molecules: A Quantum Chemical Molecular Dynamics Study. Journal of Nanoscience and Nanotechnology, 2006, 6, 1259-1270.	0.9	14
177	Optimization of a Genetic Algorithm for the Functionalization of Fullerenes. Journal of Chemical Theory and Computation, 2012, 8, 1841-1851.	2.3	14
178	Time-dependent quantum dynamical simulations of C ₂ condensation under extreme conditions. Physical Chemistry Chemical Physics, 2012, 14, 6273-6279.	1.3	14
179	Spanning the "Parameter Space―of Chemical Vapor Deposition Graphene Growth with Quantum Chemical Simulations. Journal of Physical Chemistry C, 2016, 120, 13851-13864.	1.5	14
180	Decoding Oxyanion Aqueous Solvation Structure: A Potassium Nitrate Example at Saturation. Journal of Physical Chemistry B, 2018, 122, 7584-7589.	1.2	14

#	Article	IF	Citations
181	Lithium- and chlorine-doped biphenyl dimers as models for interchain polarons and bipolarons â€" a density functional study. Chemical Physics Letters, 1996, 257, 592-600.	1.2	13
182	Self-Consistent-Charge Density-Functional Tight-Binding/MD Simulation of Transition Metal Catalyst Particle Melting and Carbide Formation. Journal of Computational and Theoretical Nanoscience, 2011, 8, 1755-1763.	0.4	13
183	Photochemical Double 5â€∢i>exo∢/i> Cyclization of Alkenylâ€Substituted Dithienylacetylenes: Efficient Synthesis of Diarylated Dithienofulvalenes. Angewandte Chemie - International Edition, 2013, 52, 10519-10523.	7.2	13
184	Nonequilibrium quantum chemical molecular dynamics simulations of C60 to SiC heterofullerene conversion. Carbon, 2014, 68, 285-295.	5 . 4	13
185	Theoretical analysis of structural diversity of covalent organic framework: Stacking isomer structures thermodynamics and kinetics. Chemical Physics Letters, 2016, 664, 101-107.	1.2	13
186	Automatized Parameterization of the Densityâ€functional Tightâ€binding Method. II. Twoâ€center Integrals. Journal of the Chinese Chemical Society, 2016, 63, 57-68.	0.8	13
187	Theoretical Elucidation of Potential Enantioselectivity in a Pd-Catalyzed Aromatic C–H Coupling Reaction. Journal of Organic Chemistry, 2017, 82, 4900-4906.	1.7	13
188	Ab initio and density functional study on singlet and triplet states of artemisinin. Computational and Theoretical Chemistry, 1998, 454, 87-90.	1.5	12
189	Understanding the On–Off Switching Mechanism in Cationic Tetravalent Group-V-Based Fluoride Molecular Sensors Using Orbital Analysis. Journal of Physical Chemistry A, 2015, 119, 12693-12698.	1.1	12
190	A global reaction route mapping-based kinetic Monte Carlo algorithm. Journal of Chemical Physics, 2016, 145, 024105.	1.2	12
191	Coupled Cluster and Density Functional Studies of Atomic Fluorine Chemisorption on Coronene as Model Systems for Graphene Fluorination. Journal of Physical Chemistry C, 2017, 121, 14888-14898.	1.5	12
192	Performance of Density-Functional Tight-Binding in Comparison to Ab Initio and First-Principles Methods for Isomer Geometries and Energies of Glucose Epimers in Vacuo and Solution. ACS Omega, 2018, 3, 16899-16915.	1.6	12
193	Prediction of the Post-Comatose Motor Function by Motor Evoked Potentials Obtained in the Acute Phase of Traumatic and Non-Traumatic Coma. Acta Neurochirurgica, 1999, 141, 841-848.	0.9	11
194	Ab initio investigation of the potential energy profiles for the gas phase CH4+O2+(2lg) reaction system. Journal of Chemical Physics, 2001, 114, 6119-6127.	1.2	11
195	Temperature Dependence of Catalyst-Free Chirality-Controlled Single-Walled Carbon Nanotube Growth from Organic Templates. Journal of Physical Chemistry Letters, 2013, 4, 3176-3180.	2.1	11
196	Carbon Coating Precedes SWCNT Nucleation on Silicon Nanoparticles: Insights from QM/MD Simulations. Journal of Physical Chemistry C, 2013, 117, 4238-4244.	1.5	11
197	Self-Consistent Optimization of Excited States within Density-Functional Tight-Binding. Journal of Chemical Theory and Computation, 2016, 12, 313-323.	2.3	11
198	Förster Resonance Energy Transfer between Fluorescent Proteins: Efficient Transition Charge-Based Study. Journal of Physical Chemistry C, 2017, 121, 4220-4238.	1.5	11

#	Article	IF	Citations
199	Unraveling the plasma-material interface with real time diagnosis of dynamic boron conditioning in extreme tokamak plasmas. Nuclear Fusion, 2017, 57, 086050.	1.6	11
200	Theoretical analysis of orientations and tautomerization of genistein in \hat{l}^2 -cyclodextrin. Journal of Molecular Liquids, 2018, 265, 16-23.	2.3	11
201	Phenyleneethynylene trimer-based rigid-flexible [2+2] macrocycles for nucleic acid labelling in live cells. Chemical Communications, 2019, 55, 5930-5933.	2.2	11
202	How does acetonitrile modulate single-walled carbon nanotube diameter during CVD growth?. Carbon, 2019, 146, 535-541.	5.4	11
203	Oxidation of Alkyl Ions, $CnH2n+1+(n=1\hat{a}^3)$, in Reactions with O2and O3in the Gas Phase. Journal of Physical Chemistry A, 2004, 108, 1980-1989.	1.1	10
204	Thermal annealing of SiC nanoparticles induces SWNT nucleation: evidence for a catalyst-independent VSS mechanism. Physical Chemistry Chemical Physics, 2011, 13, 15673.	1.3	10
205	High-temperature transformation of Fe-decorated single-wall carbon nanohorns to nanooysters: a combined experimental and theoretical study. Nanoscale, 2013, 5, 1849-1857.	2.8	10
206	Diversity in electronic structure and vibrational properties of fullerene isomers correlates with cage curvature. Carbon, 2016, 100, 484-491.	5.4	10
207	Importance of oxygen in single-walled carbon nanotube growth: Insights from QM/MD simulations. Carbon, 2017, 121, 292-300.	5.4	10
208	Er ³⁺ Photoluminescence in Er ₂ @C ₈₂ and Er ₂ C ₂ @Ctolored by Density Functional Theory. Inorganic Chemistry, 2017, 56, 6576-6583.	1.9	10
209	Implementation of replica-exchange umbrella sampling in GAMESS. Computer Physics Communications, 2018, 228, 152-162.	3.0	10
210	Ab initio theoretical studies of potential energy surfaces in the photodissociation of the vinyl radical. I. Af state dissociation. Journal of Chemical Physics, 2003, 119, 6524-6538.	1.2	9
211	Mechanisms of the Reactions of W and W+with H2O:Â Computational Studies. Journal of Physical Chemistry A, 2006, 110, 4495-4501.	1.1	9
212	Understanding of the Off–On Response Mechanism in Caged Fluorophores Based on Quantum and Statistical Mechanics. Journal of Physical Chemistry B, 2016, 120, 4449-4456.	1.2	9
213	Structural transformations of graphene exposed to nitrogen plasma: quantum chemical molecular dynamics simulations. Physical Chemistry Chemical Physics, 2019, 21, 12112-12120.	1.3	9
214	Nonadiabatic excited-state intramolecular proton transfer in 3-hydroxyflavone: S2 state involvement via multi-mode effect. Journal of Chemical Physics, 2019, 151, 214304.	1.2	9
215	Investigating the Accuracy of Water Models through the Van Hove Correlation Function. Journal of Chemical Theory and Computation, 2021, 17, 5992-6005.	2.3	9
216	Mechanisms of the Reactions of W and W+ with NOx (x = 1, 2): $\hat{a} \in \%$ A Computational Study. Journal of Physical Chemistry A, 2007, 111, 982-991.	1.1	8

#	Article	IF	CITATIONS
217	Analysis of the Relationship between Reaction Energies of Electrophilic SWNT Additions and Sidewall Curvature: Chiral Nanotubes. Journal of Physical Chemistry C, 2008, 112, 12697-12705.	1.5	8
218	Do SiO2 and carbon-doped SiO2 nanoparticles melt? Insights from QM/MD simulations and ramifications regarding carbon nanotube growth. Chemical Physics Letters, 2011, 508, 235-241.	1.2).784314 r	8 GRT /Overlo
219		1.2	8
220	Conformational dynamics of human protein kinase $CK2\hat{l}\pm$ and its effect on function and inhibition. Proteins: Structure, Function and Bioinformatics, 2018, 86, 344-353.	1.5	8
221	Theoretical Prediction and Analysis of the UV/Visible Absorption and Emission Spectra of Chiral Carbon Nanorings. Journal of Physical Chemistry A, 2018, 122, 7284-7292.	1.1	8
222	Development of Density-Functional Tight-Binding Parameters for the Molecular Dynamics Simulation of Zirconia, Yttria, and Yttria-Stabilized Zirconia. ACS Omega, 2021, 6, 20530-20548.	1.6	8
223	Dynamic aspects of graphene deformation and fracture from approximate density functional theory. Carbon, 2022, 190, 183-193.	5.4	8
224	Ab initio and density functional study on the mechanism of the C2H2++methanol reaction. Journal of Chemical Physics, 1999, 111, 3978-3988.	1.2	7
225	Quantum Chemical Prediction of Reaction Pathways and Rate Constants for Reactions of NO and NO ₂ with Monovacancy Defects on Graphite (0001) Surfaces. Journal of Physical Chemistry C, 2010, 114, 8375-8382.	1.5	7
226	Determination of Local Chirality in Irregular Single-Walled Carbon Nanotubes Based on Individual Hexagons. Physical Review Letters, 2011, 107, 175505.	2.9	7
227	Chiral-Selective Carbon Nanotube Etching with Ammonia: A Quantum Chemical Investigation. Journal of Physical Chemistry C, 2016, 120, 19862-19870.	1.5	7
228	Indirect Intersystem Crossing (S1 → T3/T2 → T1) Promoted by the Jahn–Teller Effect in Cycloparaphenylenes. Journal of Chemical Theory and Computation, 2017, 13, 4944-4949.	2.3	7
229	Quantum chemical prediction of vibrational spectra of large molecular systems with radical or metallic electronic structure. Chemical Physics Letters, 2017, 667, 317-321.	1.2	7
230	Implementation of replica-exchange umbrella sampling in the DFTB <mml:math altimg="si6.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo>+</mml:mo></mml:math> semiempirical quantum chemistry package. Computer Physics Communications, 2016, 204, 1-10.	3.0	6
231	Inducing regioselective chemical reactivity in graphene with alkali metal intercalation. Physical Chemistry Chemical Physics, 2018, 20, 19987-19994.	1.3	6
232	How the Size and Density of Charge-Transfer Excitons Depend on Heterojunction's Architecture. Journal of Physical Chemistry C, 2021, 125, 5458-5474.	1.5	6
233	A Study of the Reaction of N+ with O2:  Experimental Quantification of NO+(a 3â ⁴ +) Production (298â ⁵ 500 K) and Computational Study of the Overall Reaction Pathways. Journal of Physical Chemistry A, 2006, 110, 3080-3086.	1.1	5
234	Quantum Chemistry. , 2011, , 59-73.		5

#	Article	IF	Citations
235	Atomistic Mechanism of Carbon Nanostructure Self-Assembly as Predicted by Nonequilibrium QM/MD Simulations., 2012,, 103-172.		5
236	Elucidating the structural basis of diphenyl ether derivatives as highly potent enoyl-ACP reductase inhibitors through molecular dynamics simulations and 3D-QSAR study. Journal of Molecular Modeling, 2014, 20, 2319.	0.8	5
237	Quantum Chemical Estimation of Acetone Physisorption on Graphene Using Combined Basis Set and Size Extrapolation Schemes. Journal of Physical Chemistry C, 2017, 121, 8999-9010.	1.5	5
238	Quantum chemical molecular dynamics simulation of carbon nanotube–graphene fusion. Molecular Simulation, 2017, 43, 1269-1276.	0.9	5
239	Statistical Mechanics-Based Theoretical Investigation of Solvation Effects on Glucose Anomer Preferences. Journal of Physical Chemistry B, 2018, 122, 290-296.	1.2	5
240	When finite becomes infinite: convergence properties of vibrational spectra of oligomer chains. Journal of Molecular Modeling, 2018, 24, 288.	0.8	5
241	Chiralâ€selective etching effects on carbon nanotube growth at edge carbon atoms. Journal of Computational Chemistry, 2019, 40, 375-380.	1.5	5
242	Encapsulation of Aromatic Guests in the Bisporphyrin Cavity of a Double-Stranded Spiroborate Helicate: Thermodynamic and Kinetic Studies and the Encapsulation Mechanism. Journal of Organic Chemistry, 2021, 86, 10501-10516.	1.7	5
243	Methane Adsorption on Heteroatom-Modified <i>Maquettes</i> of Porous Carbon Surfaces. Journal of Physical Chemistry A, 2021, 125, 6042-6058.	1.1	5
244	CH Activation Generates Periodâ€Shortening Molecules That Target Cryptochrome in the Mammalian Circadian Clock. Angewandte Chemie, 2015, 127, 7299-7303.	1.6	4
245	The FMO-DFTB Method., 2021,, 459-485.		4
246	Density Functional Tight-Binding Simulations Reveal the Presence of Surface Defects on the Quartz (101)–Water Interface. Journal of Physical Chemistry C, 2021, 125, 16246-16255.	1.5	4
247	Strong Electron Correlations Determine Energetic Stability and Electronic Properties of Er-Doped Goldberg-Type Silicon Quantum Dots. Journal of Physical Chemistry C, 2009, 113, 15964-15968.	1.5	3
248	Theoretical investigation of molecular and electronic structure changes of the molecular magnet Mn ₁₂ cluster upon superâ€reduction. Physica Status Solidi - Rapid Research Letters, 2014, 8, 517-521.	1.2	3
249	Ab initio and first principles theoretical investigations of triplet–triplet fluorescence in trimethylenemethane biradicals. RSC Advances, 2016, 6, 83668-83672.	1.7	3
250	Structural influence of transition metal (Sc, Y, and Lu) atoms inside gold nanoparticles. International Journal of Quantum Chemistry, 2017, 117, e25371.	1.0	3
251	Development of density-functional tight-binding repulsive potentials for bulk zirconia using particle swarm optimization algorithm. AIP Conference Proceedings, 2017, , .	0.3	3
252	Density-Functional Tight-Binding for Platinum Clusters and Bulk: Electronic vs Repulsive Parameters. MRS Advances, 2019, 4, 1821-1832.	0.5	3

#	Article	IF	CITATIONS
253	Stochastic Search of Molecular Cluster Interaction Energy Surfaces with Coupled Cluster Quality Prediction. The Phenylacetylene Dimer. Journal of Chemical Theory and Computation, 2013, 9, 3848-3854.	2.3	2
254	Key Structures and Interactions for Binding of <i>Mycobacterium tuberculosis</i> Protein Kinase B Inhibitors from Molecular Dynamics Simulation. Chemical Biology and Drug Design, 2015, 86, 91-101.	1.5	2
255	Theoretical Investigation of Molecular and Electronic Structures of Buckminsterfullerene-Silicon Quantum Dot Systems. Journal of Physical Chemistry A, 2016, 120, 9767-9775.	1.1	2
256	Theoretical rationalization for reduced charge recombination in bulky carbazoleâ€based sensitizers in solar cells. Journal of Computational Chemistry, 2017, 38, 901-909.	1.5	2
257	QM/MD Simulations on Graphene Hydrogenation/Deuteration: C _{<i>x</i><_{H/D Formation Mechanism and Isotope Effect. Journal of Physical Chemistry C, 2017, 121, 8480-8489.}}	1.5	2
258	Density-Functional Tight-Binding Parameters for Bulk Zirconium: A Case Study for Repulsive Potentials. Journal of Physical Chemistry A, 2021, 125, 2184-2196.	1.1	2
259	Protein Molecular Dynamics Simulations with Approximate QM: What Can We Learn?. Methods in Molecular Biology, 2020, 2114, 149-161.	0.4	2
260	High-temperature quantum chemical molecular dynamics simulations of carbon nanostructure self-assembly processes., 2005,, 875-889.		1
261	Macro- and Microsimulations for a Sublimation Growth of SiC Single Crystals. Mathematical Problems in Engineering, 2009, 2009, 1-12.	0.6	1
262	Atomic Structure and Energetic Stability of Complex Chiral Silicon Nanowires. Journal of Physical Chemistry C, 2010, 114, 14692-14696.	1.5	1
263	Optimization of density functional tight-binding and classical reactive molecular dynamics for high-throughput simulations of carbon materials. , 2012 , , .		1
264	Quantum chemical replica-exchange umbrella sampling molecular dynamics simulations reveal the formation mechanism of iron phthalocyanine from iron and phthalonitrile. Journal of Chemical Physics, 2018, 149, 072332.	1.2	1
265	Quantum Chemical Molecular Dynamics Simulations of Dynamic Fullerene Self-Assembly in Benzene Combustion. ACS Nano, 2010, 4, 583-583.	7.3	0
266	Mechanisms of Single-Walled Carbon Nanotube Nucleation, Growth and Chirality-Control: Insights from QM/MD Simulations. , 2011, , .		0
267	A Simulation of Possible Carbon Nanotubes Slitting in a CMOS Compatible Way. Materials Express, 2011, 1, 343-349.	0.2	0
268	Dynamics Simulations of Fullerene and SWCNT Formation. , 2011, , 417-444.		0
269	Back Cover: Theoretical investigation of molecular and electronic structure changes of the molecular magnet Mn ₁₂ cluster upon superâ€reduction (Phys. Status Solidi RRL 6/2014). Physica Status Solidi - Rapid Research Letters, 2014, 8, .	1.2	0
270	Implementation of Replica-Exchange Umbrella Sampling to the DFTB+ Simulation Package. Biophysical Journal, 2015, 108, 159a.	0.2	0

#	Article	IF	CITATIONS
271	Rýcktitelbild: CH Activation Generates Period-Shortening Molecules That Target Cryptochrome in the Mammalian Circadian Clock (Angew. Chem. 24/2015). Angewandte Chemie, 2015, 127, 7306-7306.	1.6	O
272	Molecular dynamics in computational materials sciences: From the study of nanostructure formation to the design of fluorescent dyes. AIP Conference Proceedings, 2016, , .	0.3	0
273	Molecular dynamical modelling of endohedral fullerenes formation in plasma. IOP Conference Series: Materials Science and Engineering, 2016, 110, 012078.	0.3	0
274	Keiji Morokuma (1934–2017). Angewandte Chemie - International Edition, 2018, 57, 2288-2289.	7.2	0
275	The helixâ€inversion mechanism in doubleâ€stranded helical oligomers bridged by rotary cyclic boronate esters. Journal of Computational Chemistry, 2019, 40, 2036-2042.	1.5	0
276	Simulation of Nuclear Dynamics of C60: From Vibrational Excitation by Near-IR Femtosecond Laser Pulses to Subsequent Nanosecond Rearrangement and Fragmentation. Progress in Theoretical Chemistry and Physics, 2012, , 149-177.	0.2	0
277	Quantum Chemistry: Integrated Methods. , 0, , 3961-3974.		O