
Federico Gomez Galindo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9572392/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reversible Electroporation and Post-Electroporation Resting of Thai Basil Leaves Prior to Convective and Vacuum Drying. Applied Sciences (Switzerland), 2022, 12, 2343.	1.3	3
2	Influence of pulsed electric field-assisted dehydration on the volatile compounds of basil leaves. Innovative Food Science and Emerging Technologies, 2022, 77, 102979.	2.7	6
3	A review of drying methods for improving the quality of dried herbs. Critical Reviews in Food Science and Nutrition, 2021, 61, 1763-1786.	5.4	137
4	Decontamination of Food Packages from SARS-CoV-2 RNA with a Cold Plasma-Assisted System. Applied Sciences (Switzerland), 2021, 11, 4177.	1.3	21
5	The effect of nanosecond pulsed electric field on the production of metabolites from lactic acid bacteria in fermented watermelon juice. Innovative Food Science and Emerging Technologies, 2021, 72, 102749.	2.7	7
6	The effect of reversible permeabilization and post-electroporation resting on the survival of Thai basil (O. Basilicum cv. thyrsiflora) leaves during drying. Bioelectrochemistry, 2021, 142, 107912.	2.4	2
7	Influence of pulsed and moderate electric field protocols on the reversible permeabilization and drying of Thai basil leaves. Innovative Food Science and Emerging Technologies, 2020, 64, 102430.	2.7	14
8	Effect of reversible permeabilization in combination with different drying methods on the structure and sensorial quality of dried basil (Ocimum basilicum L.) leaves. LWT - Food Science and Technology, 2019, 99, 148-155.	2.5	53
9	Technology Allowing Baby Spinach Leaves to Acquire Freezing Tolerance. Food and Bioprocess Technology, 2018, 11, 809-817.	2.6	19
10	Influence of Vacuum Impregnation with Different Substances on the Metabolic Heat Production and Sugar Metabolism of Spinach Leaves. Food and Bioprocess Technology, 2017, 10, 1907-1917.	2.6	8
11	Responses of Plant Cells and Tissues to Pulsed Electric Field Treatments. , 2017, , 2621-2635.		2
12	Pulsed Electric Fields in Combination with Vacuum Impregnation for Improving Freezing Tolerance of Vegetables. , 2017, , 2135-2151.		1
13	X-ray microtomography provides new insights into vacuum impregnation of spinach leaves. Journal of Food Engineering, 2016, 188, 50-57.	2.7	14
14	Reduction of the Nitrate Content in Baby Spinach Leaves by Vacuum Impregnation with Sucrose. Food and Bioprocess Technology, 2016, 9, 1358-1366.	2.6	18
15	Effect of guard cells electroporation on drying kinetics and aroma compounds of Genovese basil () Tj ETQq1 1 C).784314 r 2.7	gBT_/Overlock
16	Responses of Plant Cells and Tissues to Pulsed Electric Field Treatments. , 2016, , 1-15.		1
17	Investigation of the metabolic consequences of impregnating spinach leaves with trehalose and applying a pulsed electric field. Bioelectrochemistry, 2016, 112, 153-157.	2.4	11
18	Pulsed Electric Fields in Combination with Vacuum Impregnation for Improving Freezing Tolerance of Vegetables. , 2016. , 1-17.		0

#	Article	IF	CITATIONS
19	Analysis of polysaccharide and proteinaceous macromolecules in beer using asymmetrical flow field-flow fractionation. Journal of the Institute of Brewing, 2015, 121, 44-48.	0.8	17
20	Influence of vacuum impregnation and pulsed electric field on the freezing temperature and ice propagation rates of spinach leaves. LWT - Food Science and Technology, 2015, 64, 497-502.	2.5	23
21	New insights into the dynamics of vacuum impregnation of plant tissues and its metabolicÂconsequences. Journal of the Science of Food and Agriculture, 2015, 95, 1127-1130.	1.7	19
22	Modeling electroporation of the non-treated and vacuum impregnated heterogeneous tissue of spinach leaves. Innovative Food Science and Emerging Technologies, 2015, 29, 55-64.	2.7	23
23	Vacuum impregnation modulates the metabolic activity of spinach leaves. Innovative Food Science and Emerging Technologies, 2014, 26, 286-293.	2.7	22
24	Influence of Pulsed Electric Field Protocols on the Reversible Permeabilization of Rucola Leaves. Food and Bioprocess Technology, 2014, 7, 761-773.	2.6	39
25	Microscopic studies providing insight into the mechanisms of mass transfer in vacuum impregnation. Innovative Food Science and Emerging Technologies, 2013, 18, 169-176.	2.7	34
26	Effect of vacuum infused cryoprotectants on the freezing tolerance of strawberry tissues. LWT - Food Science and Technology, 2013, 52, 146-150.	2.5	37
27	Behavior of the surviving population of Lactobacillus plantarum 564 upon the application of pulsed electric fields. Innovative Food Science and Emerging Technologies, 2013, 17, 93-98.	2.7	18
28	Design of Equipment for Pulsed Electric Field Processing. , 2012, , 1078-1106.		1
29	Effect of pulsed electric field on the germination of barley seeds. LWT - Food Science and Technology, 2012, 47, 161-166.	2.5	47
30	Metabolomic evaluation of pulsed electric field-induced stress on potato tissue. Planta, 2009, 230, 469-479.	1.6	69
31	Effects of Pulsed Electric Field on the Viscoelastic Properties of Potato Tissue. Food Biophysics, 2009, 4, 229-239.	1.4	34
32	Isothermal calorimetry for biological applications in food science and technology. Food Control, 2009, 20, 956-961.	2.8	54
33	Exploring Metabolic Responses of Potato Tissue Induced by Electric Pulses. Food Biophysics, 2008, 3, 352-360.	1.4	44
34	Pulsed electric field reduces the permeability of potato cell wall. Bioelectromagnetics, 2008, 29, 296-301.	0.9	39
35	Pulsed electric field in combination with vacuum impregnation with trehalose improves the freezing tolerance of spinach leaves. Journal of Food Engineering, 2008, 88, 144-148.	2.7	111
36	Plant Stress Physiology: Opportunities and Challenges for the Food Industry. Critical Reviews in Food Science and Nutrition, 2007, 47, 749-763.	5.4	45

#	Article	IF	CITATIONS
37	Effect of long-term storage and blanching pre-treatments on the osmotic dehydration kinetics of carrots (Daucus carota L. cv. Nerac). Journal of Food Engineering, 2007, 81, 313-317.	2.7	16
38	Effects of the application of anti-browning substances on the metabolic activity and sugar composition of fresh-cut potatoes. Postharvest Biology and Technology, 2007, 43, 151-157.	2.9	63
39	Tissue damage in heated carrot slices. Comparing mild hot water blanching and infrared heating. Journal of Food Engineering, 2005, 67, 381-385.	2.7	68
40	On the induction of cold acclimation in carrots (Daucus carota L.) and its influence on storage performance. Food Research International, 2005, 38, 29-36.	2.9	15
41	The potential of isothermal calorimetry in monitoring and predicting quality changes during processing and storage of minimally processed fruits and vegetables. Trends in Food Science and Technology, 2005, 16, 325-331.	7.8	22
42	Factors Affecting Quality and Postharvest Properties of Vegetables: Integration of Water Relations and Metabolism. Critical Reviews in Food Science and Nutrition, 2004, 44, 139-154.	5.4	52
43	Changes in the carrot (Daucus carota L. cv. Nerac) cell wall during storage. Food Research International, 2004, 37, 225-232.	2.9	24