
## Yuxin Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9572222/publications.pdf Version: 2024-02-01



ΥΠΧΙΝ ΖΗΛΟ

| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Cyclodextrin-Based Aerogels: A Review of Nanomaterials Systems and Applications. ACS Applied Nano<br>Materials, 2022, 5, 13921-13939.                                                                             | 2.4  | 4         |
| 2  | Two-dimensional oxide derived from high-temperature liquid metals via bubble templating. Nano<br>Research, 2021, 14, 4795-4801.                                                                                   | 5.8  | 7         |
| 3  | State-of-the-art progress in overall water splitting of carbon nitride based photocatalysts. Frontiers in Energy, 2021, 15, 600-620.                                                                              | 1.2  | 13        |
| 4  | Au nanowires with high aspect ratio and atomic shell of Pt-Ru alloy for enhanced methanol oxidation reaction. Chinese Chemical Letters, 2021, 32, 2033-2037.                                                      | 4.8  | 14        |
| 5  | Pillararene-based self-assemblies for electrochemical biosensors. Biosensors and Bioelectronics, 2021, 181, 113164.                                                                                               | 5.3  | 37        |
| 6  | Bioapplication of cyclodextrin-containing montmorillonite. Journal of Materials Chemistry B, 2021, 9,<br>9241-9261.                                                                                               | 2.9  | 7         |
| 7  | Pillararene/Calixarene-based systems for battery and supercapacitor applications. EScience, 2021, 1, 28-43.                                                                                                       | 25.0 | 97        |
| 8  | Engineering a Copper@Polypyrrole Nanowire Network in the Near Field for Plasmon-Enhanced Solar Evaporation. ACS Nano, 2021, 15, 16376-16394.                                                                      | 7.3  | 39        |
| 9  | Schottky Contacts Regularized Linear Regression for Signal Inconsistency Circumvent in Resistive Gas<br>Microâ€Nanosensors. Small Methods, 2021, 5, e2101194.                                                     | 4.6  | 2         |
| 10 | Highly efficient charge transfer at 2D/2D layered P-La2Ti2O7/Bi2WO6 contact heterojunctions for upgraded visible-light-driven photocatalysis. Applied Catalysis B: Environmental, 2020, 261, 118244.              | 10.8 | 118       |
| 11 | Two-Dimensional Amorphous SnO <sub><i>x</i></sub> from Liquid Metal: Mass Production, Phase<br>Transfer, and Electrocatalytic CO <sub>2</sub> Reduction toward Formic Acid. Nano Letters, 2020, 20,<br>2916-2922. | 4.5  | 97        |
| 12 | PdO/SnO <sub>2</sub> heterostructure for low-temperature detection of CO with fast response and recovery. RSC Advances, 2019, 9, 22875-22882.                                                                     | 1.7  | 23        |
| 13 | Superaerophilic copper nanowires for efficient and switchable CO <sub>2</sub> electroreduction.<br>Nanoscale Horizons, 2019, 4, 490-494.                                                                          | 4.1  | 39        |
| 14 | Heterogenization of few-layer MoS2 with highly crystalline 3D Ni3S2 nanoframes effectively<br>synergizes the electrocatalytic hydrogen generation in alkaline medium. Materials Today Energy, 2019,<br>13, 85-92. | 2.5  | 26        |
| 15 | Engineering Interfacial Aerophilicity of Nickel-Embedded Nitrogen-Doped CNTs for Electrochemical<br>CO <sub>2</sub> Reduction. ACS Applied Energy Materials, 2019, 2, 3991-3998.                                  | 2.5  | 23        |
| 16 | Pd-loaded SnO <sub>2</sub> hierarchical nanospheres for a high dynamic range H <sub>2</sub> S<br>micro sensor. RSC Advances, 2019, 9, 5987-5994.                                                                  | 1.7  | 25        |
| 17 | Ultrafine nanoparticles of W-doped SnO2for durable H2S sensors with fast response and recovery.<br>RSC Advances, 2019, 9, 11046-11053.                                                                            | 1.7  | 19        |
| 18 | Electronic Structure Engineering of 2D Carbon Nanosheets by Evolutionary Nitrogen Modulation for<br>Synergizing CO <sub>2</sub> Electroreduction. ACS Applied Energy Materials, 2019, 2, 3151-3159.               | 2.5  | 7         |

Υυχιν Ζηαο

| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Selectivity regulation of CO2 electroreduction through contact interface engineering on superwetting Cu nanoarray electrodes. Nano Research, 2019, 12, 345-349.                                                   | 5.8  | 80        |
| 20 | A stable ZIF-8-coated mesh membrane with micro-/nano architectures produced by a facile fabrication method for high-efficiency oil-water separation. Science China Materials, 2019, 62, 536-544.                  | 3.5  | 25        |
| 21 | Facile preparation of novel hydrophobic sponges coated by Cu2O with different crystal facet structure for selective oil absorption and oil/water separation. Journal of Materials Science, 2018, 53, 10025-10038. | 1.7  | 15        |
| 22 | Self-assembly of Au@Ag core–shell nanocuboids into staircase superstructures by droplet<br>evaporation. Nanoscale, 2018, 10, 142-149.                                                                             | 2.8  | 44        |
| 23 | UiO-66-Coated Mesh Membrane with Underwater Superoleophobicity for High-Efficiency Oil–Water<br>Separation. ACS Applied Materials & Interfaces, 2018, 10, 17301-17308.                                            | 4.0  | 120       |
| 24 | PVP-assisted synthesis of unsupported NiMo catalysts with enhanced hydrodesulfurization activity.<br>Fuel Processing Technology, 2017, 160, 93-101.                                                               | 3.7  | 12        |
| 25 | Cation exchanged MOF-derived nitrogen-doped porous carbons for CO <sub>2</sub> capture and supercapacitor electrode materials. Journal of Materials Chemistry A, 2017, 5, 9544-9552.                              | 5.2  | 149       |
| 26 | A general method for ultrathin 1D oxide nanomaterials. Nanoscale, 2017, 9, 12830-12834.                                                                                                                           | 2.8  | 2         |
| 27 | Growth of copper oxide nanocrystals in metallic nanotubes for high performance battery anodes.<br>Nanoscale, 2016, 8, 19994-20000.                                                                                | 2.8  | 20        |
| 28 | Construction of novel three dimensionally ordered macroporous carbon nitride for highly efficient photocatalytic activity. Applied Catalysis B: Environmental, 2016, 198, 276-285.                                | 10.8 | 149       |
| 29 | Advanced Materials and Nanotechnology for Sustainable Energy Development. Journal of Nanotechnology, 2015, 2015, 1-1.                                                                                             | 1.5  | 1         |
| 30 | Hyper-Branched Cu@Cu <sub>2</sub> O Coaxial Nanowires Mesh Electrode for Ultra-Sensitive Glucose<br>Detection ACS Applied Materials & Interfaces, 2015, 7, 16802-16812.                                           | 4.0  | 99        |
| 31 | Epitaxial growth of hyperbranched Cu/Cu2O/CuO core-shell nanowire heterostructures for lithium-ion batteries. Nano Research, 2015, 8, 2763-2776.                                                                  | 5.8  | 68        |
| 32 | Hierarchical branched Cu <sub>2</sub> O nanowires with enhanced photocatalytic activity and stability for H <sub>2</sub> production. Nanoscale, 2014, 6, 195-198.                                                 | 2.8  | 61        |
| 33 | Copper@carbon coaxial nanowires synthesized by hydrothermal carbonization process from<br>electroplating wastewater and their use as an enzyme-free glucose sensor. Analyst, The, 2013, 138,<br>559-568.          | 1.7  | 39        |
| 34 | Facile preparation of Cu–Cu2O nanoporous nanoparticles as a potential catalyst for non-enzymatic glucose sensing. RSC Advances, 2013, 3, 2178.                                                                    | 1.7  | 40        |
| 35 | Large-scale synthesis of Cu nanowires with gradient scales by using "hard―strategies and size effects<br>on electrical properties. CrystEngComm, 2013, 15, 332-342.                                               | 1.3  | 8         |
| 36 | A flexible chemical vapor deposition method to synthesize copper@carbon core–shell structured<br>nanowires and the study of their structural electrical properties. New Journal of Chemistry, 2012, 36,<br>1161.  | 1.4  | 27        |

Υυχιν Ζηαο

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The investigation of a hydro-thermal method to fabricate Cu@C coaxial nanowires and their special electronic transport and heat conduction properties. New Journal of Chemistry, 2012, 36, 1255. | 1.4 | 14        |
| 38 | Soft synthesis of single-crystal coppernanowires of various scales. New Journal of Chemistry, 2012, 36, 130-138.                                                                                 | 1.4 | 42        |
| 39 | Rapid and large-scale synthesis of Cu nanowires via a continuous flow solvothermal process and its application in dye-sensitized solar cells (DSSCs). RSC Advances, 2012, 2, 11544.              | 1.7 | 35        |