Valentina Sulpizio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/957219/publications.pdf

Version: 2024-02-01

430754 477173 34 931 18 29 citations g-index h-index papers 34 34 34 785 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Selective role of lingual/parahippocampal gyrus and retrosplenial complex in spatial memory across viewpoint changes relative to the environmental reference frame. Behavioural Brain Research, 2013, 242, 62-75.	1.2	95
2	Spatiotemporal brain mapping during preparation, perception, and action. NeuroImage, 2016, 126, 1-14.	2.1	94
3	Direct and indirect parieto-medial temporal pathways for spatial navigation in humans: evidence from resting-state functional connectivity. Brain Structure and Function, 2017, 222, 1945-1957.	1.2	61
4	Distributed cognitive maps reflecting real distances between places and views in the human brain. Frontiers in Human Neuroscience, 2014, 8, 716.	1.0	56
5	A penny for your thoughts! patterns of fMRI activity reveal the content and the spatial topography of visual mental images. Human Brain Mapping, 2015, 36, 945-958.	1.9	54
6	Hemispheric asymmetries in the transition from action preparation to execution. Neurolmage, 2017, 148, 390-402.	2.1	51
7	Neural bases of self―and object―motion in a naturalistic vision. Human Brain Mapping, 2020, 41, 1084-1111.	1.9	41
8	I can see where you would be: Patterns of fMRI activity reveal imagined landmarks. NeuroImage, 2017, 144, 174-182.	2.1	40
9	Role of the human retrosplenial cortex/parieto-occipital sulcus in perspective priming. NeuroImage, 2016, 125, 108-119.	2.1	39
10	Age-related effects on spatial memory across viewpoint changes relative to different reference frames. Psychological Research, 2015, 79, 687-697.	1.0	38
11	A common neural substrate for processing scenes and egomotion-compatible visual motion. Brain Structure and Function, 2020, 225, 2091-2110.	1.2	38
12	Functional connectivity between posterior hippocampus and retrosplenial complex predicts individual differences in navigational ability. Hippocampus, 2016, 26, 841-847.	0.9	35
13	Egomotionâ€related visual areas respond to active leg movements. Human Brain Mapping, 2019, 40, 3174-3191.	1.9	31
14	A putative human homologue of the macaque area PEc. Neurolmage, 2019, 202, 116092.	2.1	29
15	Visuospatial transformations and personality: evidence of a relationship between visuospatial perspective taking and self-reported emotional empathy. Experimental Brain Research, 2015, 233, 2091-2102.	0.7	23
16	Assessing the effective connectivity of premotor areas during real vs imagined grasping: a DCM-PEB approach. Neurolmage, 2021, 230, 117806.	2.1	23
17	Path integration in 3D from visual motion cues: A human fMRI study. Neurolmage, 2016, 142, 512-521.	2.1	22
18	The dynamic contribution of the highâ€level visual cortex to imagery and perception. Human Brain Mapping, 2019, 40, 2449-2463.	1.9	22

#	Article	IF	CITATIONS
19	Caloric Vestibular Stimulation Reduces Pain and Somatoparaphrenia in a Severe Chronic Central Post-Stroke Pain Patient: A Case Study. PLoS ONE, 2016, 11, e0151213.	1.1	19
20	Preference for locomotion-compatible curved paths and forward direction of self-motion in somatomotor and visual areas. Cortex, 2021, 137, 74-92.	1.1	14
21	Real and Imagined Grasping Movements Differently Activate the Human Dorsomedial Parietal Cortex. Neuroscience, 2020, 434, 22-34.	1.1	13
22	Prompting future events: Effects of temporal cueing and time on task on brain preparation to action. Brain and Cognition, 2020, 141, 105565.	0.8	13
23	Extinction learning is slower, weaker and less context specific after alcohol. Neurobiology of Learning and Memory, 2015, 125, 55-62.	1.0	12
24	Implicit coding of location and direction in a familiar, real-world "vista―space. Behavioural Brain Research, 2017, 319, 16-24.	1.2	12
25	Lower visual field preference for the visuomotor control of limb movements in the human dorsomedial parietal cortex. Brain Structure and Function, 2021, 226, 2989-3005.	1.2	12
26	Multisensory integration in cortical regions responding to locomotionâ€related visual and somatomotor signals. Neurolmage, 2021, 244, 118581.	2.1	12
27	One's own country and familiar places in the mind's eye: Different topological representations for navigational and non-navigational contents. Neuroscience Letters, 2014, 579, 52-57.	1.0	11
28	Neural Codes for One's Own Position and Direction in a Real-World "Vista―Environment. Frontiers in Human Neuroscience, 2018, 12, 167.	1.0	8
29	Individual differences in mental imagery modulate effective connectivity of scene-selective regions during resting state. Brain Structure and Function, 2022, 227, 1831-1842.	1.2	4
30	Embodied and disembodied allocentric simulation in high schizotypal subjects. Experimental Brain Research, 2014, 232, 3023-3033.	0.7	3
31	Neural representations underlying mental imagery as unveiled by representation similarity analysis. Brain Structure and Function, 2021, 226, 1511-1531.	1.2	2
32	Egomotion-related visual areas respond to goal-directed movements. Brain Structure and Function, 2022, 227, 2313-2328.	1.2	2
33	Effect of Exoskeleton-Assisted Rehabilitation Over Prefrontal Cortex in Multiple Sclerosis Patients: A Neuroimaging Pilot Study. Brain Topography, 2021, 34, 651-663.	0.8	1
34	Reduced Priming Effect for Visual–Spatial Perspective Taking in Patients With Severe Acquired Brain Injury. Archives of Clinical Neuropsychology, 2021, , .	0.3	1