David E H J Gernaat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9572078/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Climate change impacts on the energy system: a model comparison. Environmental Research Letters, 2022, 17, 034036.	5.2	3
2	A systematic framework for the assessment of sustainable hydropower potential in a river basin – The case of the upper Indus. Science of the Total Environment, 2021, 786, 147142.	8.0	18
3	Climate change impacts on renewable energy supply. Nature Climate Change, 2021, 11, 119-125.	18.8	218
4	The role of methane in future climate strategies: mitigation potentials and climate impacts. Climatic Change, 2020, 163, 1409-1425.	3.6	39
5	Afforestation for climate change mitigation: Potentials, risks and tradeâ€offs. Global Change Biology, 2020, 26, 1576-1591.	9.5	162
6	Impacts of climate change on energy systems in global and regional scenarios. Nature Energy, 2020, 5, 794-802.	39.5	180
7	Global resource potential of seasonal pumped hydropower storage for energy and water storage. Nature Communications, 2020, 11, 947.	12.8	121
8	The role of residential rooftop photovoltaic in long-term energy and climate scenarios. Applied Energy, 2020, 279, 115705.	10.1	50
9	Reply to: Why fossil fuel producer subsidies matter. Nature, 2020, 578, E5-E7.	27.8	3
10	Hydropower dependency and climate change in sub-Saharan Africa: AÂnexus framework and evidence-based review. Journal of Cleaner Production, 2019, 231, 1399-1417.	9.3	90
11	Integrated scenarios to support analysis of the food–energy–water nexus. Nature Sustainability, 2019, 2, 1132-1141.	23.7	79
12	Looking under the hood: A comparison of techno-economic assumptions across national and global integrated assessment models. Energy, 2019, 172, 1254-1267.	8.8	107
13	Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies. Nature Climate Change, 2018, 8, 391-397.	18.8	455
14	Limited emission reductions from fuel subsidy removal except in energy-exporting regions. Nature, 2018, 554, 229-233.	27.8	125
15	Exploring SSP land-use dynamics using the IMAGE model: Regional and gridded scenarios of land-use change and land-based climate change mitigation. Global Environmental Change, 2018, 48, 119-135.	7.8	202
16	Evaluating the use of biomass energy with carbon capture and storage in low emission scenarios. Environmental Research Letters, 2018, 13, 044014.	5.2	81
17	High-resolution assessment of global technical and economic hydropower potential. Nature Energy, 2017, 2, 821-828.	39.5	186
18	Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Global Environmental Change, 2017, 42, 237-250.	7.8	523

DAVID E H J GERNAAT

#	Article	IF	CITATIONS
19	Understanding the contribution of non-carbon dioxide gases in deep mitigation scenarios. Global Environmental Change, 2015, 33, 142-153.	7.8	75
20	Assessing current and future techno-economic potential of concentrated solar power and photovoltaic electricity generation. Energy, 2015, 89, 739-756.	8.8	98
21	Global long-term cost dynamics of offshore wind electricity generation. Energy, 2014, 76, 663-672.	8.8	28