Young il Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9571968/publications.pdf Version: 2024-02-01

YOUNC IL LEE

#	Article	IF	CITATIONS
1	Developmental neuromuscular synapse elimination: Activity-dependence and potential downstream effector mechanisms. Neuroscience Letters, 2020, 718, 134724.	1.0	12
2	Lifetime analysis of mdx skeletal muscle reveals a progressive pathology that leads to myofiber loss. Scientific Reports, 2020, 10, 17248.	1.6	25
3	Exclusive vital labeling of myonuclei for studying myonuclear arrangement in mouse skeletal muscle tissue. Skeletal Muscle, 2020, 10, 15.	1.9	10
4	Wesley J. Thompson (1947–2019). Frontiers in Molecular Neuroscience, 2020, 13, 91.	1.4	0
5	Morphological remodeling during recovery of the neuromuscular junction from terminal Schwann cell ablation in adult mice. Scientific Reports, 2020, 10, 11132.	1.6	7
6	Differences in the constituent fiber types contribute to the intermuscular variation in the timing of the developmental synapse elimination. Scientific Reports, 2019, 9, 8694.	1.6	9
7	Nerve sprouting capacity in a pharmacologically induced mouse model of spinal muscular atrophy. Scientific Reports, 2019, 9, 7799.	1.6	2
8	Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiological Reviews, 2019, 99, 427-511.	13.1	767
9	Cycles of myofiber degeneration and regeneration lead to remodeling of the neuromuscular junction in two mammalian models of Duchenne muscular dystrophy. PLoS ONE, 2018, 13, e0205926.	1.1	43
10	Schwann cells participate in synapse elimination at the developing neuromuscular junction. Current Opinion in Neurobiology, 2017, 47, 176-181.	2.0	26
11	Neuromuscular Junction (NMJ): Synaptic Basal Lamina â~†. , 2017, , .		1
12	Neuregulin1 displayed on motor axons regulates terminal Schwann cell-mediated synapse elimination at developing neuromuscular junctions. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E479-87.	3.3	64
13	The Use of Synaptic Basal Lamina and Its Components to Identify Sites of Recent Morphological Alterations at Mammalian Neuromuscular Junctions. Neuromethods, 2015, , 13-22.	0.2	1
14	Terminal Schwann Cells Participate in the Competition Underlying Neuromuscular Synapse Elimination. Journal of Neuroscience, 2013, 33, 17724-17736.	1.7	73
15	The Vertebrate Neuromuscular Junction. , 2012, , 775-787.		0
16	Muscles in a mouse model of spinal muscular atrophy show profound defects in neuromuscular development even in the absence of failure in neuromuscular transmission or loss of motor neurons. Developmental Biology, 2011, 356, 432-444.	0.9	110
17	Changes in Aging Mouse Neuromuscular Junctions Are Explained by Degeneration and Regeneration of Muscle Fiber Segments at the Synapse. Journal of Neuroscience, 2011, 31, 14910-14919.	1.7	133
18	Rapsyn interacts with the muscle acetylcholine receptor via α-helical domains in the α, β, and ε subunit intracellular loops. Neuroscience, 2009, 163, 222-232.	1.1	30

#	Article	IF	CITATIONS
19	Rapsyn carboxyl terminal domains mediate muscle specific kinase–induced phosphorylation of the muscle acetylcholine receptor. Neuroscience, 2008, 153, 997-1007.	1.1	20
20	Identification of a Motif in the Acetylcholine Receptor β Subunit Whose Phosphorylation Regulates Rapsyn Association and Postsynaptic Receptor Localization. Journal of Neuroscience, 2008, 28, 11468-11476.	1.7	61