Lipeng Ning

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9571281/publications.pdf

Version: 2024-02-01

471509 477307 1,065 48 17 29 citations h-index g-index papers 50 50 50 1516 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Retrospective harmonization of multi-site diffusion MRI data acquired with different acquisition parameters. Neurolmage, 2019, 184, 180-200.	4.2	115
2	Cross-scanner and cross-protocol diffusion MRI data harmonisation: A benchmark database and evaluation of algorithms. NeuroImage, 2019, 195, 285-299.	4.2	92
3	Multi-site harmonization of diffusion MRI data in a registration framework. Brain Imaging and Behavior, 2018, 12, 284-295.	2.1	83
4	Sparse Reconstruction Challenge for diffusion MRI: Validation on a physical phantom to determine which acquisition scheme and analysis method to use?. Medical Image Analysis, 2015, 26, 316-331.	11.6	78
5	Estimating Diffusion Propagator and Its Moments Using Directional Radial Basis Functions. IEEE Transactions on Medical Imaging, 2015, 34, 2058-2078.	8.9	59
6	Cross-scanner and cross-protocol multi-shell diffusion MRI data harmonization: Algorithms and results. NeuroImage, 2020, 221, 117128.	4.2	54
7	A joint compressed-sensing and super-resolution approach for very high-resolution diffusion imaging. Neurolmage, 2016, 125, 386-400.	4.2	49
8	Limits and reproducibility of resting-state functional MRI definition of DLPFC targets for neuromodulation. Brain Stimulation, 2019, 12, 129-138.	1.6	45
9	Distances and Riemannian Metrics for Multivariate Spectral Densities. IEEE Transactions on Automatic Control, 2012, 57, 1723-1735.	5.7	37
10	Performance of unscented Kalman filter tractography in edema: Analysis of the two-tensor model. NeuroImage: Clinical, 2017, 15, 819-831.	2.7	37
11	Deep learning based segmentation of brain tissue from diffusion MRI. Neurolmage, 2021, 233, 117934.	4.2	36
12	On Matrix-Valued Monge–Kantorovich Optimal Mass Transport. IEEE Transactions on Automatic Control, 2015, 60, 373-382.	5.7	29
13	Detecting microstructural white matter abnormalities of frontal pathways in children with ADHD using advanced diffusion models. Brain Imaging and Behavior, 2020, 14, 981-997.	2.1	29
14	Joint RElaxation-Diffusion Imaging Moments to Probe Neurite Microstructure. IEEE Transactions on Medical Imaging, 2020, 39, 668-677.	8.9	29
15	Highâ€fidelity, accelerated wholeâ€brain submillimeter in vivo diffusion MRI using gSliderâ€spherical ridgelets (gSliderâ€SR). Magnetic Resonance in Medicine, 2020, 84, 1781-1795.	3.0	28
16	Suprathreshold fiber cluster statistics: Leveraging white matter geometry to enhance tractography statistical analysis. Neurolmage, 2018, 171, 341-354.	4.2	26
17	Cumulant expansions for measuring water exchange using diffusion MRI. Journal of Chemical Physics, 2018, 148, 074109.	3.0	26
18	Coping with model error in variational data assimilation using optimal mass transport. Water Resources Research, 2014, 50, 5817-5830.	4.2	18

#	Article	lF	CITATIONS
19	On the Geometry of Covariance Matrices. IEEE Signal Processing Letters, 2013, 20, 787-790.	3.6	17
20	Precise Inference and Characterization of Structural Organization (PICASO) of tissue from molecular diffusion. Neurolmage, 2017, 146, 452-473.	4.2	17
21	Matricial Wasserstein-1 Distance. , 2017, 1, 1-1.		16
22	MK-curve - Characterizing the relation between mean kurtosis and alterations in the diffusion MRI signal. Neurolmage, 2019, 196, 68-80.	4.2	15
23	Linear Models Based on Noisy Data and the Frisch Scheme. SIAM Review, 2015, 57, 167-197.	9.5	14
24	White matter markers and predictors for subject-specific rTMS response in major depressive disorder. Journal of Affective Disorders, 2022, 299, 207-214.	4.1	13
25	New insights about time-varying diffusivity and its estimation from diffusion MRI. Magnetic Resonance in Medicine, 2017, 78, 763-774.	3.0	11
26	Rapid whole-brain electric field mapping in transcranial magnetic stimulation using deep learning. PLoS ONE, 2021, 16, e0254588.	2.5	11
27	Sparse factor analysis via likelihood and & amp; \pm x2113; < inf & gt; 1 < /inf & gt; -regularization., 2011, , .		10
28	A Dynamic Regression Approach for Frequency-Domain Partial Coherence and Causality Analysis of Functional Brain Networks. IEEE Transactions on Medical Imaging, 2018, 37, 1957-1969.	8.9	8
29	Quantifying Genetic and Environmental Influence on Gray Matter Microstructure Using Diffusion MRI. Cerebral Cortex, 2020, 30, 6191-6205.	2.9	8
30	Metrics for Matrix-valued Measures via Test Functions. , 2014, , .		7
31	Elevated hippocampal choline level is associated with altered functional connectivity in females with major depressive disorder: A pilot study. Psychiatry Research - Neuroimaging, 2018, 278, 48-55.	1.8	6
32	Probing tissue microstructure by diffusion skewness tensor imaging. Scientific Reports, 2021, 11, 135.	3.3	6
33	Accelerated diffusion and relaxationâ€diffusion MRI using timeâ€division multiplexing EPI. Magnetic Resonance in Medicine, 2021, 86, 2528-2541.	3.0	6
34	Regularization and Interpolation of Positive Matrices. IEEE Transactions on Automatic Control, 2018, 63, 1208-1212.	5.7	5
35	A Compressed-Sensing Approach for Super-Resolution Reconstruction of Diffusion MRI. Lecture Notes in Computer Science, 2015, 24, 57-68.	1.3	4
36	Separation of system dynamics and line spectra via sparse representation. , 2010, , .		3

#	Article	IF	Citations
37	On robustness of & amp; $\#x2113$; & lt; inf & gt; l& lt; / inf & gt; -regularization methods for spectral estimation., 2014, , .		3
38	Estimation of Bounded and Unbounded Trajectories in Diffusion MRI. Frontiers in Neuroscience, 2016, 10, 129.	2.8	3
39	Accelerating joint relaxationâ€diffusion MRI by integrating time division multiplexing and simultaneous multiâ€slice (TDMâ€6MS) strategies. Magnetic Resonance in Medicine, 2022, 87, 2697-2709.	3.0	3
40	Smooth Interpolation of Covariance Matrices and Brain Network Estimation. IEEE Transactions on Automatic Control, 2019, 64, 3184-3193.	5.7	2
41	Metrics for multivariate power spectra. , 2012, , .		1
42	Geometric methods for structured covariance estimation. , 2012, , .		1
43	Matrix-valued Monge-Kantorovich optimal mass transport. , 2013, , .		1
44	Smooth Interpolation of Covariance Matrices and Brain Network Estimation: Part II. IEEE Transactions on Automatic Control, 2020, 65, 1901-1910.	5.7	1
45	Maximum Entropy Estimation of Glutamate and Glutamine in MR Spectroscopic Imaging. Lecture Notes in Computer Science, 2014, 17, 749-756.	1.3	1
46	The Wasserstein metric in Factor Analysis. , 2013, , 8-12.		0
47	Diffusion Propagator Estimation Using Gaussians Scattered in q-Space. Mathematics and Visualization, 2014, , 141-150.	0.6	0
48	Supra-Threshold Fiber Cluster Statistics for Data-Driven Whole Brain Tractography Analysis. Lecture Notes in Computer Science, 2017, , 556-565.	1.3	0