

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9571206/publications.pdf Version: 2024-02-01

CHAOLI

#	Article	IF	CITATIONS
1	Different reaction behaviours of light or heavy density polyethylene during the pyrolysis with biochar as the catalyst. Journal of Hazardous Materials, 2020, 399, 123075.	6.5	74
2	Co-pyrolysis of cellulose/lignin and sawdust: Influence of secondary condensation of the volatiles on characteristics of biochar. Energy, 2021, 226, 120442.	4.5	62
3	Pyrolysis of waste surgical masks into liquid fuel and its life-cycle assessment. Bioresource Technology, 2022, 346, 126582.	4.8	62
4	Impact of heating rates on the evolution of function groups of the biochar from lignin pyrolysis. Journal of Analytical and Applied Pyrolysis, 2021, 155, 105031.	2.6	56
5	In situ characterization of functional groups of biochar in pyrolysis of cellulose. Science of the Total Environment, 2021, 799, 149354.	3.9	50
6	Co-pyrolysis of coke bottle wastes with cellulose, lignin and sawdust: Impacts of the mixed feedstock on char properties. Renewable Energy, 2022, 181, 1126-1139.	4.3	48
7	Progress of the development of reactors for pyrolysis of municipal waste. Sustainable Energy and Fuels, 2020, 4, 5885-5915.	2.5	32
8	Catalytic pyrolysis of polyethylene terephthalate over zeolite catalyst: Characteristics of coke and the products. International Journal of Energy Research, 2021, 45, 19028-19042.	2.2	25
9	Interaction of the volatiles from co-pyrolysis of pig manure with cellulose/glucose and their effects on char properties. Journal of Environmental Chemical Engineering, 2020, 8, 104583.	3.3	20
10	Fates of heavy organics of bio-oil in hydrotreatment: The key challenge in the way from biomass to biofuel. Science of the Total Environment, 2021, 778, 146321.	3.9	20
11	Pyrolysis of furfural residues: Property and applications of the biochar. Journal of Environmental Management, 2022, 316, 115324.	3.8	20
12	Pyrolysis of cellulose: Correlation of hydrophilicity with evolution of functionality of biochar. Science of the Total Environment, 2022, 825, 153959.	3.9	19
13	Pyrolysis of saw dust with co-feeding of methanol. Renewable Energy, 2020, 160, 1023-1035.	4.3	18
14	Pyrolysis of soybean residue: Understanding characteristics of the products. Renewable Energy, 2021, 174, 487-500.	4.3	17
15	Cross-interaction of volatiles from co-pyrolysis of lignin with pig manure and their effects on properties of the resulting biochar. Biochar, 2021, 3, 391-405.	6.2	15
16	Impact of Acidic/Basic Sites of the Catalyst on Properties of the Coke Formed in Pyrolysis of Guaiacol: A Model Compound of the Phenolics in Bio-oil. Energy & Fuels, 2020, 34, 11026-11040.	2.5	13
17	Understanding evolution of the products and emissions during chemical activation of furfural residue with varied potassium salts. Journal of Cleaner Production, 2022, 357, 131936.	4.6	12
18	Biochar catalyzing polymerization of the volatiles from pyrolysis of poplar wood. International Journal of Energy Research, 2021, 45, 13936-13951.	2.2	11

Chao Li

#	Article	IF	CITATIONS
19	Activation of waste paper: Influence of varied chemical agents on product properties. Waste Management, 2022, 146, 94-105.	3.7	11
20	Impacts of temperature on hydrophilicity/functionalities of char and evolution of bio-oil/gas in pyrolysis of pig manure. Fuel, 2022, 323, 124330.	3.4	10
21	Pyrolysis of cellulose with co-feeding of formic or acetic acid. Cellulose, 2020, 27, 4909-4929.	2.4	9
22	Pyrolysis of sesame residue: Evolution of the volatiles and structures of biochar versus temperature. Environmental Technology and Innovation, 2021, 24, 101859.	3.0	9
23	Cu-Based Nanoparticles as Catalysts for Selective Hydrogenation of Biomass-Derived 5-Hydroxymethylfurfural to 1,2-Hexanediol. ACS Applied Nano Materials, 2022, 5, 5882-5894.	2.4	9
24	Influence of asphalt-derived volatiles on property of the biochar from pyrolysis of sawdust. Fuel Processing Technology, 2022, 234, 107343.	3.7	7
25	Pyrolysis behaviors of rapeseed meal: products distribution and properties. Biomass Conversion and Biorefinery, 0, , 1.	2.9	2
26	Co-pyrolysis of polyethylene terephthalate and poplar wood: influence of zeolite catalyst on coke formation. Biomass Conversion and Biorefinery, 0, , 1.	2.9	2