Candido Fabrizio Pirri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9571032/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Correlation between impedance spectroscopy and bubble-induced mass transport in the electrochemical reduction of carbon dioxide. Journal of Energy Chemistry, 2022, 67, 500-507.	7.1	9
2	Microwave-assisted methacrylation of chitosan for 3D printable hydrogels in tissue engineering. Materials Advances, 2022, 3, 514-525.	2.6	18
3	Novel Insights into Sb-Cu Catalysts for Electrochemical Reduction of CO2. Applied Catalysis B: Environmental, 2022, 306, 121089.	10.8	25
4	Crown-Ether Functionalized Graphene Oxide Membrane for Lithium Recovery from Water. Membranes, 2022, 12, 233.	1.4	15
5	Microwave-Assisted Synthesis of Nitrogen and Sulphur Doped Graphene Decorated with Antimony Oxide: An Effective Catalyst for Oxygen Reduction Reaction. Materials, 2022, 15, 10.	1.3	4
6	Current and emerging trends in polymeric 3D printed microfluidic devices. Additive Manufacturing, 2022, 55, 102867.	1.7	29
7	3D printing of fully cellulose-based hydrogels by digital light processing. Sustainable Materials and Technologies, 2022, 32, e00444.	1.7	10
8	Human Blood Platelets Adsorption on Polymeric Materials for Liquid Biopsy. Sensors, 2022, 22, 4788.	2.1	1
9	Facile synthesis of cubic cuprous oxide for electrochemical reduction of carbon dioxide. Journal of Materials Science, 2021, 56, 1255-1271.	1.7	19
10	N-doping modification by plasma treatment in polyacrylonitrile derived carbon-based nanofibers for Oxygen Reduction Reaction. International Journal of Hydrogen Energy, 2021, 46, 13845-13854.	3.8	11
11	Effect of Volatile Organic Compounds Adsorption on 3D-Printed PEGDA:PEDOT for Long-Term Monitoring Devices. Nanomaterials, 2021, 11, 94.	1.9	13
12	Hyperbolic Metamaterials via Hierarchical Block Copolymer Nanostructures. Advanced Optical Materials, 2021, 9, 2001933.	3.6	17
13	Editorial for the Special Issue on 2D Nanomaterials Processing and Integration in Miniaturized Devices. Micromachines, 2021, 12, 254.	1.4	0
14	Biochar-Supported BiOx for Effective Electrosynthesis of Formic Acid from Carbon Dioxide Reduction. Crystals, 2021, 11, 363.	1.0	10
15	3D-printed self-healing hydrogels via Digital Light Processing. Nature Communications, 2021, 12, 2462.	5.8	122
16	Biochar/Zinc Oxide Composites as Effective Catalysts for Electrochemical CO ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2021, 9, 5445-5453.	3.2	46
17	Enhanced Power Extraction with Sediment Microbial Fuel Cells by Anode Alternation. Fuels, 2021, 2, 168-178.	1.3	4
18	Zn- and Ti-Doped SnO2 for Enhanced Electroreduction of Carbon Dioxide. Materials, 2021, 14, 2354.	1.3	7

#	Article	IF	CITATIONS
19	Funneling Spontaneous Emission into Waveguides via Epsilon-Near-Zero Metamaterials. Nanomaterials, 2021, 11, 1410.	1.9	2
20	Polymer-metal complexes as emerging catalysts for electrochemical reduction of carbon dioxide. Journal of Applied Electrochemistry, 2021, 51, 1301-1311.	1.5	12
21	Electrospun PEO/PEDOT:PSS Nanofibers for Wearable Physiological Flex Sensors. Sensors, 2021, 21, 4110.	2.1	5
22	Integration of Portable Sedimentary Microbial Fuel Cells in Autonomous Underwater Vehicles. Energies, 2021, 14, 4551.	1.6	5
23	A Study of the Effect of Electrode Composition on the Electrochemical Reduction of CO2. Catalysis Today, 2021, , .	2.2	13
24	Layered Double Hydroxide-Based Gas Sensors for VOC Detection at Room Temperature. ACS Omega, 2021, 6, 20205-20217.	1.6	19
25	Efficient CO2 Electroreduction on Tin Modified Cuprous Oxide Synthesized via a One-Pot Microwave-Assisted Route. Catalysts, 2021, 11, 907.	1.6	2
26	DNA Studies: Latest Spectroscopic and Structural Approaches. Micromachines, 2021, 12, 1094.	1.4	1
27	The effects of secondary doping on ink-jet printed PEDOT:PSS gas sensors for VOCs and NO2 detection. Sensors and Actuators B: Chemical, 2021, 345, 130381.	4.0	27
28	Facilely synthesized nitrogen-doped reduced graphene oxide functionalized with copper ions as electrocatalyst for oxygen reduction. Npj 2D Materials and Applications, 2021, 5, .	3.9	22
29	Reaching silicon-based NEMS performances with 3D printed nanomechanical resonators. Nature Communications, 2021, 12, 6080.	5.8	23
30	Focalization Performance Study of a Novel Bulk Acoustic Wave Device. Nanomaterials, 2021, 11, 2630.	1.9	2
31	Living Bacteria Directly Embedded into Electrospun Nanofibers: Design of New Anode for Bio-Electrochemical Systems. Nanomaterials, 2021, 11, 3088.	1.9	7
32	An Electrochemical Platform for the Carbon Dioxide Capture and Conversion to Syngas. Energies, 2021, 14, 7869.	1.6	5
33	CO2 permeability control in 3D printed light responsive structures. Applied Materials Today, 2020, 18, 100470.	2.3	15
34	A modular 3D printed lab-on-a-chip for early cancer detection. Lab on A Chip, 2020, 20, 665-674.	3.1	44
35	Microwaveâ€Assisted Synthesis of Copperâ€Based Electrocatalysts for Converting Carbon Dioxide to Tunable Syngas. ChemElectroChem, 2020, 7, 229-238	1.7	22
36	Graphene Oxide Membranes for Trace Hydrocarbon Contaminant Removal from Aqueous Solution. Nanomaterials, 2020, 10, 2242.	1.9	10

#	Article	IF	CITATIONS
37	Rapid prototyping of 3D Organic Electrochemical Transistors by composite photocurable resin. Scientific Reports, 2020, 10, 13335.	1.6	43
38	Tailored and Guided Dewetting of Block Copolymer/Homopolymer Blends. Macromolecules, 2020, 53, 7207-7217.	2.2	6
39	Application of a Micro Free-Flow Electrophoresis 3D Printed Lab-on-a-Chip for Micro-Nanoparticles Analysis. Nanomaterials, 2020, 10, 1277.	1.9	16
40	DLP 3D Printing Meets Lignocellulosic Biopolymers: Carboxymethyl Cellulose Inks for 3D Biocompatible Hydrogels. Polymers, 2020, 12, 1655.	2.0	64
41	Fabrication and Functionalization of 3D Printed Polydimethylsiloxaneâ€Based Microfluidic Devices Obtained through Digital Light Processing. Advanced Materials Technologies, 2020, 5, 2000374.	3.0	39
42	Materials Testing for the Development of Biocompatible Devices through Vat-Polymerization 3D Printing. Nanomaterials, 2020, 10, 1788.	1.9	41
43	Design and Optimization of Piezoresistive PEO/PEDOT:PSS Electrospun Nanofibers for Wearable Flex Sensors. Nanomaterials, 2020, 10, 2166.	1.9	22
44	Binder Free and Flexible Asymmetric Supercapacitor Exploiting Mn3O4 and MoS2 Nanoflakes on Carbon Fibers. Nanomaterials, 2020, 10, 1084.	1.9	30
45	Coupled Copper–Zinc Catalysts for Electrochemical Reduction of Carbon Dioxide. ChemSusChem, 2020, 13, 4128-4139.	3.6	51
46	Electrospun Nanofibers: from Food to Energy by Engineered Electrodes in Microbial Fuel Cells. Nanomaterials, 2020, 10, 523.	1.9	21
47	PDMS-Based Microdevices for the Capture of MicroRNA Biomarkers. Applied Sciences (Switzerland), 2020, 10, 3867.	1.3	4
48	3D Printed Active Objects based on the Promising PEDOT: PSS Resin: Investigation of their Integration inside an Electronic Circuit. International Journal of Engineering Research and Technology, 2020, 13, 462.	0.3	9
49	PDMS/Polyimide Composite as an Elastomeric Substrate for Multifunctional Laser-Induced Graphene Electrodes. ACS Applied Materials & Interfaces, 2019, 11, 33221-33230.	4.0	78
50	P3HT Processing Study for In-Liquid EGOFET Biosensors: Effects of the Solvent and the Surface. Proceedings (mdpi), 2019, 15, 39.	0.2	2
51	Scaling Organic Electrochemical Transistors Down to Nanosized Channels. Small, 2019, 15, e1902332.	5.2	22
52	Biohybrid Cathode in Single Chamber Microbial Fuel Cell. Nanomaterials, 2019, 9, 36.	1.9	14
53	Proving the existence of Mn porphyrin-like complexes hosted in reduced graphene oxide with outstanding performance as oxygen reduction reaction catalysts. 2D Materials, 2019, 6, 045001.	2.0	19
54	Nanomechanical DNA resonators for sensing and structural analysis of DNA-ligand complexes. Nature Communications, 2019, 10, 1690.	5.8	21

#	Article	IF	CITATIONS
55	Chainlike Mesoporous SnO ₂ as a Well-Performing Catalyst for Electrochemical CO ₂ Reduction. ACS Applied Energy Materials, 2019, 2, 3081-3091.	2.5	70
56	Multifunctional flexible membranes based on reduced graphene oxide/tin dioxide nanocomposite and cellulose fibers. Electrochimica Acta, 2019, 306, 420-426.	2.6	19
57	Study on the Printability through Digital Light Processing Technique of Ionic Liquids for CO2 Capture. Polymers, 2019, 11, 1932.	2.0	7
58	P3HT Processing Study for In-Liquid EGOFET Biosensors: Effects of the Solvent and the Surface. Sensors, 2019, 19, 4497.	2.1	6
59	Sn-Decorated Cu for Selective Electrochemical CO ₂ to CO Conversion: Precision Architecture beyond Composition Design. ACS Applied Energy Materials, 2019, 2, 867-872.	2.5	41
60	A novel highly electrically conductive composite resin for stereolithography. Materials Today Communications, 2019, 19, 12-17.	0.9	58
61	Simple PDMS microdevice for biomedical applications. Talanta, 2019, 193, 44-50.	2.9	29
62	Allâ€inâ€One Cellulose Nanocrystals for 3D Printing of Nanocomposite Hydrogels. Angewandte Chemie - International Edition, 2018, 57, 2353-2356.	7.2	89
63	3D-printed microfluidics on thin poly(methyl methacrylate) substrates for genetic applications. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, .	0.6	18
64	TiO2 nanotube-based smart 3D electrodes by anodic oxidation of additively manufactured Ti6Al4V structures. Materials Today Communications, 2018, 15, 165-170.	0.9	4
65	Electrical Conductivity Modulation of Crosslinked Composite Nanofibers Based on PEO and PEDOT:PSS. Journal of Nanomaterials, 2018, 2018, 1-7.	1.5	16
66	Electrospinningâ€onâ€Electrode Assembly for Airâ€Cathodes in Microbial Fuel Cells. Advanced Materials Interfaces, 2018, 5, 1801107.	1.9	7
67	Three-Dimensional Printed Photoluminescent Polymeric Waveguides. ACS Applied Materials & Interfaces, 2018, 10, 39319-39326.	4.0	32
68	Advanced Cu-Sn foam for selectively converting CO2 to CO in aqueous solution. Applied Catalysis B: Environmental, 2018, 236, 475-482.	10.8	118
69	Graphene/Ruthenium Active Species Aerogel as Electrode for Supercapacitor Applications. Materials, 2018, 11, 57.	1.3	21
70	Development of New Hybrid Acrylic/Epoxy DLP-3D Printable Materials. Inventions, 2018, 3, 29.	1.3	36
71	Graphene-Based Membrane Technology: Reaching Out to the Oil and Gas Industry. Geofluids, 2018, 2018, 1-13.	0.3	6
72	In situ continuous current production from marine floating microbial fuel cells. Applied Energy, 2018, 230, 78-85.	5.1	22

#	Article	IF	CITATIONS
73	High-Performing and Stable Wearable Supercapacitor Exploiting rGO Aerogel Decorated with Copper and Molybdenum Sulfides on Carbon Fibers. ACS Applied Energy Materials, 2018, 1, 4440-4447.	2.5	88
74	Optimized design and fabrication of a microfluidic platform to study single cells and multicellular aggregates in 3D. Microfluidics and Nanofluidics, 2017, 21, 1.	1.0	20
75	Polymeric 3D Printed Functional Microcantilevers for Biosensing Applications. ACS Applied Materials & Interfaces, 2017, 9, 19193-19201.	4.0	55
76	Bridging electrochemical and electron devices: fast resistive switching based on polyaniline from one pot synthesis using FeCl 3 as oxidant and co-doping agent. Synthetic Metals, 2017, 229, 72-81.	2.1	22
77	Study of graphene oxide-based 3D printable composites: Effect of the in situ reduction. Composites Part B: Engineering, 2017, 124, 9-15.	5.9	98
78	Anodically-grown TiO 2 nanotubes: Effect of the crystallization on the catalytic activity toward the oxygen reduction reaction. Applied Surface Science, 2017, 412, 447-454.	3.1	18
79	3D printable light-responsive polymers. Materials Horizons, 2017, 4, 396-401.	6.4	88
80	Development of 3D printable formulations containing CNT with enhanced electrical properties. Polymer, 2017, 109, 246-253.	1.8	157
81	Thermal evolution of Mn _x O _y nanofibres as catalysts for the oxygen reduction reaction. Physical Chemistry Chemical Physics, 2017, 19, 28781-28787.	1.3	13
82	Wafer Level Integration of 3-D Heat Sinks in Power ICs. IEEE Transactions on Electron Devices, 2017, 64, 4226-4232.	1.6	2
83	Zinc Oxide Thin Films for Memristive Devices: A Review. Critical Reviews in Solid State and Materials Sciences, 2017, 42, 153-172.	6.8	82
84	Modeling, Fabrication and Testing of a Customizable Micromachined Hotplate for Sensor Applications. Sensors, 2017, 17, 62.	2.1	21
85	TiO 2 nanotube array as biocompatible electrode in view of implantable supercapacitors. Journal of Energy Storage, 2016, 8, 193-197.	3.9	23
86	Ionic liquid-enhanced soft resistive switching devices. RSC Advances, 2016, 6, 94128-94138.	1.7	31
87	Oneâ€Pot Microwaveâ€Assisted Synthesis of Reduced Graphene Oxide/Iron Oxide Nanocomposite Catalyst for the Oxygen Reduction Reaction. ChemistrySelect, 2016, 1, 3640-3646.	0.7	22
88	Hydrophobic Scratch Resistant UV-Cured Epoxy Coating. Macromolecular Materials and Engineering, 2016, 301, 93-98.	1.7	4
89	Mixed 1T–2H Phase MoS ₂ /Reduced Graphene Oxide as Active Electrode for Enhanced Supercapacitive Performance. ACS Applied Materials & Interfaces, 2016, 8, 32842-32852.	4.0	132
90	Resistive hysteresis in flexible nanocomposites and colloidal suspensions: interfacial coupling mechanism unveiled. RSC Advances, 2016, 6, 56661-56667.	1.7	48

#	Article	IF	CITATIONS
91	3D Printed PEG-Based Hybrid Nanocomposites Obtained by Sol–Gel Technique. ACS Applied Materials & Interfaces, 2016, 8, 5627-5633.	4.0	81
92	Nanostructural evolution of one-dimensional BaTiO ₃ structures by hydrothermal conversion of vertically aligned TiO ₂ nanotubes. Nanoscale, 2016, 8, 6866-6876.	2.8	17
93	On-chip purification and detection of hepatitis C virus RNA from human plasma. Biophysical Chemistry, 2016, 208, 54-61.	1.5	12
94	Focusing and Extraction of Light mediated by Bloch Surface Waves. Scientific Reports, 2015, 4, 5428.	1.6	52
95	Nanobranched ZnO Structure: pâ€Type Doping Induces Piezoelectric Voltage Generation and Ferroelectric–Photovoltaic Effect. Advanced Materials, 2015, 27, 4218-4223.	11.1	65
96	Electrodes/Electrolyte Interfaces in the Presence of a Surfaceâ€Modified Photopolymer Electrolyte: Application in Dye‧ensitized Solar Cells. ChemPhysChem, 2015, 16, 960-969.	1.0	69
97	Self-standing polymer-functionalized reduced graphene oxide papers obtained via a UV-process. RSC Advances, 2015, 5, 95805-95812.	1.7	10
98	Effect of surface area on the rate of photocatalytic water oxidation as promoted by different manganese oxides. Chemical Engineering Journal, 2015, 278, 36-45.	6.6	15
99	Ultrafast Room-Temperature Crystallization of TiO2 Nanotubes Exploiting Water-Vapor Treatment. Scientific Reports, 2015, 5, 7808.	1.6	70
100	Enhanced Performance of Graphene–Epoxy Flexible Capacitors by Means of Ceramic Fillers. Macromolecular Chemistry and Physics, 2015, 216, 707-713.	1.1	8
101	Memristive devices based on graphene oxide. Carbon, 2015, 85, 383-396.	5.4	122
102	Blue and UV combined photolithographic polymerization for the patterning of thick structures. Chemical Engineering Journal, 2015, 267, 65-72.	6.6	9
103	Dispelling clichés at the nanoscale: the true effect of polymer electrolytes on the performance of dye-sensitized solar cells. Nanoscale, 2015, 7, 12010-12017.	2.8	68
104	Flexible piezoelectric energy nanogenerator based on ZnO nanotubes hosted in a polycarbonate membrane. Nano Energy, 2015, 13, 474-481.	8.2	86
105	Ultraviolet mem-sensors: flexible anisotropic composites featuring giant photocurrent enhancement. Nano Research, 2015, 8, 1956-1963.	5.8	26
106	Evaluation of the piezoelectric properties and voltage generation of flexible zinc oxide thin films. Nanotechnology, 2015, 26, 215704.	1.3	59
107	Reduction of bacterial adhesion on dental composite resins by silicon–oxygen thin film coatings. Biomedical Materials (Bristol), 2015, 10, 015017.	1.7	19
108	Leveraging ZnO morphologies in piezoelectric composites for mechanical energy harvesting. Nano Energy, 2015, 18, 212-221.	8.2	39

#	Article	IF	CITATIONS
109	Two-Photon Polymerization Lithography and Laser Doppler Vibrometry of a SU-8-Based Suspended Microchannel Resonator. Journal of Microelectromechanical Systems, 2015, 24, 1038-1042.	1.7	22
110	Enhanced fluorescence detection of miRNA-16 on a photonic crystal. Analyst, The, 2015, 140, 5459-5463.	1.7	31
111	Oxygenâ€Inhibition Lithography for the Fabrication of Multipolymeric Structures. Advanced Materials, 2015, 27, 4560-4565.	11.1	28
112	Synthesis of polyaniline-based inks for inkjet printed devices: electrical characterization highlighting the effect of primary and secondary doping. Semiconductor Science and Technology, 2015, 30, 104001.	1.0	41
113	One-pot synthesis of graphene-molybdenum oxide hybrids and their application to supercapacitor electrodes. Applied Materials Today, 2015, 1, 27-32.	2.3	39
114	A hyper-realistic method for facial approximation: the case of the Italian humanist Angelo Poliziano. Anthropologischer Anzeiger, 2015, 72, 235-244.	0.2	7
115	Enhancement of photoconversion efficiency in dye-sensitized solar cells exploiting pulsed laser deposited niobium pentoxide blocking layers. Thin Solid Films, 2015, 574, 38-42.	0.8	18
116	Flexible Tactile Sensing Based on Piezoresistive Composites: A Review. Sensors, 2014, 14, 5296-5332.	2.1	346
117	Coral-shaped ZnO nanostructures for dye-sensitized solar cell photoanodes. Progress in Photovoltaics: Research and Applications, 2014, 22, 189-197.	4.4	34
118	Hybrid Ag-based inks for nanocomposite inkjet printed lines: RF properties. Journal of Alloys and Compounds, 2014, 615, S501-S504.	2.8	15
119	Inkjet-printed PEDOT:PSS electrodes on plasma-modified PDMS nanocomposites: quantifying plasma treatment hardness. RSC Advances, 2014, 4, 51477-51485.	1.7	61
120	Optimization of 1D ZnO@TiO ₂ Core–Shell Nanostructures for Enhanced Photoelectrochemical Water Splitting under Solar Light Illumination. ACS Applied Materials & Interfaces, 2014, 6, 12153-12167.	4.0	190
121	Synthesis of ferroelectric BaTiO ₃ tube-like arrays by hydrothermal conversion of a vertically aligned TiO ₂ nanotube carpet. New Journal of Chemistry, 2014, 38, 2024-2030.	1.4	19
122	Shape-Controlled Synthesis of Silver Nature-Like Spiky Particles for Piezoresistive Sensor Applications. European Journal of Inorganic Chemistry, 2014, 2014, 2711-2719.	1.0	1
123	OncomiR detection in circulating body fluids: a PDMS microdevice perspective. Lab on A Chip, 2014, 14, 4067-4075.	3.1	24
124	A polymer Lab-on-a-Chip for genetic analysis using the arrayed primer extension on microarray chips. Biomedical Microdevices, 2014, 16, 661-670.	1.4	26
125	Piezoresistive flexible composite for robotic tactile applications. Sensors and Actuators A: Physical, 2014, 208, 1-9.	2.0	95
126	Charge transport improvement employing TiO ₂ nanotube arrays as front-side illuminated dye-sensitized solar cell photoanodes. Physical Chemistry Chemical Physics, 2013, 15, 2596-2602.	1.3	71

#	Article	IF	CITATIONS
127	Enhancement of electron lifetime in dye-sensitized solar cells using anodically grown TiO2 nanotube/nanoparticle composite photoanodes. Microelectronic Engineering, 2013, 111, 137-142.	1.1	29
128	Effect of the fabrication method on the functional properties of BaTiO3: PVDF nanocomposites. Journal of Materials Science, 2013, 48, 6943-6951.	1.7	34
129	An easy approach for the fabrication of TiO2 nanotube-based transparent photoanodes for Dye-sensitized Solar Cells. Solar Energy, 2013, 95, 90-98.	2.9	45
130	Synthesis of polyaniline-based inks, doping thereof and test device printing towards electronic applications. Journal of Materials Chemistry C, 2013, 1, 5101.	2.7	75
131	Monitoring the dye impregnation time of nanostructured photoanodes for dye sensitized solar cells. Journal of Physics: Conference Series, 2013, 439, 012012.	0.3	8
132	Characterization of photovoltaic modules for low-power indoor application. Applied Energy, 2013, 102, 1295-1302.	5.1	77
133	First Pseudohalogen Polymer Electrolyte for Dye-Sensitized Solar Cells Promising for <i>In Situ</i> Photopolymerization. Journal of Physical Chemistry C, 2013, 117, 20421-20430.	1.5	71
134	Wearable and flexible pedobarographic insole for continuous pressure monitoring. , 2013, , .		11
135	Epoxy/BaTiO ₃ Light ured Composites as Organic Capacitors. Macromolecular Materials and Engineering, 2013, 298, 634-643.	1.7	9
136	Fast TiO2Sensitization Using the Semisquaric Acid as Anchoring Group. International Journal of Photoenergy, 2013, 2013, 1-8.	1.4	4
137	Surface label-free sensing by means of a fluorescent multilayered photonic structure. Applied Physics Letters, 2012, 101, 131105.	1.5	19
138	Electric Characterization and Modeling of Microfluidic-Based Dye-Sensitized Solar Cell. International Journal of Photoenergy, 2012, 2012, 1-11.	1.4	14
139	Microfluidic housing system: a useful tool for the analysis of dye-sensitized solar cell components. Applied Physics A: Materials Science and Processing, 2012, 109, 377-383.	1.1	19
140	An easy method for the room-temperature growth of spongelike nanostructured Zn films as initial step for the fabrication of nanostructured ZnO. Thin Solid Films, 2012, 524, 107-112.	0.8	30
141	Investigation of the Faraday effect in tellurite glass optical fibre. , 2012, , .		1
142	Evaluation of different conductive nanostructured particles as filler in smart piezoresistive composites. Nanoscale Research Letters, 2012, 7, 327.	3.1	27
143	Surface functionalization by poly-acrylic acid plasma-polymerized films for microarray DNA diagnostics. Surface and Coatings Technology, 2012, 207, 389-399.	2.2	31
144	Influence of the dye impregnation time on the electrical impedance of a solar cell. Journal of Applied Physics, 2012, 112, 024106.	1.1	2

#	Article	IF	CITATIONS
145	Synthesis and Characterization of Gold Nanostars as Filler of Tunneling Conductive Polymer Composites. European Journal of Inorganic Chemistry, 2012, 2012, 2669-2673.	1.0	40
146	Photopolymerization of a perfluoropolyether oligomer and photolithographic processes for the fabrication of microfluidic devices. European Polymer Journal, 2012, 48, 1118-1126.	2.6	42
147	Solid phase DNA extraction on PDMS and direct amplification. Lab on A Chip, 2011, 11, 4029.	3.1	37
148	Synthesis of amorphous silicon/magnesia based direct opals with tunable optical properties. Optical Materials, 2011, 33, 563-569.	1.7	8
149	Giant Piezoresistive Variation of Metal Particles Dispersed in PDMS Matrix. Materials Research Society Symposia Proceedings, 2011, 1299, 1.	0.1	6
150	Amorphous silicon and silicon nitride channel optical waveguides. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 836-839.	0.8	1
151	Furnace annealing effects in the formation of titanium silicide Schottky barriers. , 2010, , .		1
152	Electrical characterization of self-aligned titanium silicide SBDs formed by furnace annealing. , 2010, ,		2
153	Structural and chemical analysis of self-aligned titanium silicide formed by furnace annealing. , 2010, ,		0
154	Patterning of SU-8 resist with digital micromirror device (DMD) maskless lithography. Proceedings of SPIE, 2009, , .	0.8	7
155	Enhanced imaging of magnetic structures in micropatterned arrays of Co dots and antidots. Journal of Magnetism and Magnetic Materials, 2008, 320, e669-e673.	1.0	16
156	Evaluation of different PDMS interconnection solutions for silicon, Pyrex and COC microfluidic chips. Journal of Micromechanics and Microengineering, 2008, 18, 055012.	1.5	33
157	Silicon microcantilevers with different actuation-readout schemes for absolute pressure measurement. Journal of Physics: Conference Series, 2008, 100, 092008.	0.3	1
158	Thermally evaporated Cu–Co top spin valve with random exchange bias. Journal of Applied Physics, 2007, 101, 123915.	1.1	20
159	Polymeric mask protection for alternative KOH silicon wet etching. Journal of Micromechanics and Microengineering, 2007, 17, 1387-1393.	1.5	37
160	In situ etch treatments of silicon carbide epitaxial layer for morphological quality improvement of the surfaces. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 2294-2297.	0.8	0
161	Silicon resonant microcantilevers for absolute pressure measurement. Journal of Vacuum Science & Technology B, 2006, 24, 1803.	1.3	78
162	Intrinsic pinning and current percolation signatures in E-J characteristics of Si/YSZ/CeO2/YBCO layouts. European Physical Journal B, 2005, 48, 359-365.	0.6	4

#	Article	IF	CITATIONS
163	Growth, morphological and structural characterization of silicon carbide epilayers for power electronic devices applications. Crystal Research and Technology, 2005, 40, 964-966.	0.6	0
164	R.F. SPUTTERING DEPOSITION OF BUFFER LAYERS FOR SI/YBCO INTEGRATED MICROELECTRONICS. International Journal of Modern Physics B, 2005, 19, 4605-4617.	1.0	4
165	Defect characterization of 4H-SiC wafers for power electronic device applications. Journal of Physics Condensed Matter, 2002, 14, 13397-13402.	0.7	21
166	Photoluminescence and electronic density of states in a-C:H films. Applied Physics Letters, 1998, 72, 2520-2522.	1.5	39
167	Structural and optoelectronic properties of doped microcrystalline silicon carbide films. Semiconductor Science and Technology, 1994, 9, 1543-1548.	1.0	14
168	Differences in physical properties of hydrogenated and fluorinated amorphous silicon carbide prepared by reactive sputtering. Journal of Applied Physics, 1992, 71, 5641-5645.	1.1	22
169	Influence of doping on the structural and optoelectronic properties of amorphous and microcrystalline silicon carbide. Journal of Applied Physics, 1992, 72, 1327-1333.	1.1	146
170	Physical properties of undoped and doped hydrogenated amorphous silicon carbide. Semiconductor Science and Technology, 1991, 6, 1141-1146.	1.0	24
171	Ï€ bands and gap states from optical absorption and electron-spin-resonance studies on amorphous carbon and amorphous hydrogenated carbon films. Physical Review B, 1991, 43, 2131-2135.	1.1	199
172	Effects of temperature on structural properties of hydrogenated amorphous siliconâ€germanium and carbonâ€siliconâ€germanium alloys. Journal of Applied Physics, 1991, 69, 2029-2032.	1.1	9
173	Comprehensive Characterization of Large Piezoresistive Variation of Ni-PDMS Composites. Applied Mechanics and Materials, 0, 110-116, 1336-1344.	0.2	13
174	Singleâ€Step 3D Printing of Silverâ€Patterned Polymeric Devices for Bacteria Proliferation Control. Macromolecular Materials and Engineering, 0, , 2100596.	1.7	5
175	Stable and Reversible Lithium Storage Properties of LiTiO _x Nanotubes for Electrochemical Recovery from Aqueous Solutions. ChemElectroChem, 0, , .	1.7	0
176	Electrochemical Reduction of CO2 With Good Efficiency on a Nanostructured Cu-Al Catalyst. Frontiers in Chemistry, 0, 10, .	1.8	4