Aldo Gago

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/957051/publications.pdf Version: 2024-02-01

Διρο Ολοο

#	Article	IF	CITATIONS
1	A high-performance, durable and low-cost proton exchange membrane electrolyser with stainless steel components. Energy and Environmental Science, 2022, 15, 109-122.	15.6	72
2	Deciphering the Exceptional Performance of NiFe Hydroxide for the Oxygen Evolution Reaction in an Anion Exchange Membrane Electrolyzer. ACS Applied Energy Materials, 2022, 5, 2221-2230.	2.5	22
3	Towards Replacing Titanium with Copper in the Bipolar Plates for Proton Exchange Membrane Water Electrolysis. Materials, 2022, 15, 1628.	1.3	13
4	Longâ€Term Operation of Nbâ€Coated Stainless Steel Bipolar Plates for Proton Exchange Membrane Water Electrolyzers. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	8
5	Exploring the Interface of Skinâ€Layered Titanium Fibers for Electrochemical Water Splitting. Advanced Energy Materials, 2021, 11, 2002926.	10.2	48
6	Increasing the performance of an anion-exchange membrane electrolyzer operating in pure water with a nickel-based microporous layer. Joule, 2021, 5, 1776-1799.	11.7	85
7	Porous Transport Layers for Proton Exchange Membrane Electrolysis Under Extreme Conditions of Current Density, Temperature, and Pressure. Advanced Energy Materials, 2021, 11, 2100630.	10.2	60
8	Porous Transport Layers for Proton Exchange Membrane Electrolysis Under Extreme Conditions of Current Density, Temperature, and Pressure (Adv. Energy Mater. 33/2021). Advanced Energy Materials, 2021, 11, 2170131.	10.2	3
9	Spatially graded porous transport layers for gas evolving electrochemical energy conversion: High performance polymer electrolyte membrane electrolyzers. Energy Conversion and Management, 2020, 226, 113545.	4.4	34
10	Elucidating the Performance Limitations of Alkaline Electrolyte Membrane Electrolysis: Dominance of Anion Concentration in Membrane Electrode Assembly. ChemElectroChem, 2020, 7, 3951-3960.	1.7	33
11	Advancement of Segmented Cell Technology in Low Temperature Hydrogen Technologies. Energies, 2020, 13, 2301.	1.6	10
12	Toward developing accelerated stress tests for proton exchange membrane electrolyzers. Current Opinion in Electrochemistry, 2020, 21, 225-233.	2.5	50
13	Insight into the Mechanisms of High Activity and Stability of Iridium Supported on Antimony-Doped Tin Oxide Aerogel for Anodes of Proton Exchange Membrane Water Electrolyzers. ACS Catalysis, 2020, 10, 2508-2516.	5.5	67
14	High Performance Anion Exchange Membrane Electrolysis Using Plasma-Sprayed, Non-Precious-Metal Electrodes. ACS Applied Energy Materials, 2019, 2, 7903-7912.	2.5	80
15	Initial approaches in benchmarking and round robin testing for proton exchange membrane water electrolyzers. International Journal of Hydrogen Energy, 2019, 44, 9174-9187.	3.8	80
16	Highly active nano-sized iridium catalysts: synthesis and <i>operando</i> spectroscopy in a proton exchange membrane electrolyzer. Chemical Science, 2018, 9, 3570-3579.	3.7	86
17	Highly active screen-printed Ir Ti4O7 anodes for proton exchange membrane electrolyzers. International Journal of Hydrogen Energy, 2018, 43, 16824-16833.	3.8	9
18	Investigation of activity and stability of carbon supported oxynitrides with ultra-low Pt concentration as ORR catalyst for PEM fuel cells. Journal of Electroanalytical Chemistry, 2018, 819, 312-321.	1.9	24

Aldo Gago

#	Article	IF	CITATIONS
19	Degradation of Proton Exchange Membrane (PEM) Electrolysis: The Influence of Current Density. ECS Transactions, 2018, 86, 695-700.	0.3	20
20	Operando Evidence for a Universal Oxygen Evolution Mechanism on Thermal and Electrochemical Iridium Oxides. Journal of Physical Chemistry Letters, 2018, 9, 3154-3160.	2.1	121
21	Cost-Effective PEM Electrolysis: The Quest to Achieve Superior Efficiencies with Reduced Investment. ECS Transactions, 2018, 85, 3-13.	0.3	8
22	Improving the activity and stability of Ir catalysts for PEM electrolyzer anodes by SnO ₂ :Sb aerogel supports: does V addition play an active role in electrocatalysis?. Journal of Materials Chemistry A, 2017, 5, 3172-3178.	5.2	50
23	Highly active anode electrocatalysts derived from electrochemical leaching of Ru from metallic Ir 0.7 Ru 0.3 for proton exchange membrane electrolyzers. Nano Energy, 2017, 34, 385-391.	8.2	106
24	Low-Cost and Durable Bipolar Plates for Proton Exchange Membrane Electrolyzers. Scientific Reports, 2017, 7, 44035.	1.6	88
25	Comprehensive investigation of novel pore-graded gas diffusion layers for high-performance and cost-effective proton exchange membrane electrolyzers. Energy and Environmental Science, 2017, 10, 2521-2533.	15.6	147
26	Nanosized IrO _{<i>x</i>} –Ir Catalyst with Relevant Activity for Anodes of Proton Exchange Membrane Electrolysis Produced by a Costâ€Effective Procedure. Angewandte Chemie - International Edition, 2016, 55, 742-746.	7.2	173
27	Uncovering the Stabilization Mechanism in Bimetallic Ruthenium–Iridium Anodes for Proton Exchange Membrane Electrolyzers. Journal of Physical Chemistry Letters, 2016, 7, 3240-3245.	2.1	58
28	Coated Stainless Steel Bipolar Plates for Proton Exchange Membrane Electrolyzers. Journal of the Electrochemical Society, 2016, 163, F3119-F3124.	1.3	53
29	Electrochemical Analysis of Synthetized Iridium Nanoparticles for Oxygen Evolution Reaction in Acid Medium. ECS Transactions, 2016, 72, 1-9.	0.3	7
30	Proton Exchange Membrane Electrolyzer Systems Operating Dynamically at High Current Densities. ECS Transactions, 2016, 72, 11-21.	0.3	5
31	Durable Membrane Electrode Assemblies for Proton Exchange Membrane Electrolyzer Systems Operating at High Current Densities. Electrochimica Acta, 2016, 210, 502-511.	2.6	115
32	Protective coatings on stainless steel bipolar plates for proton exchange membrane (PEM) electrolysers. Journal of Power Sources, 2016, 307, 815-825.	4.0	131
33	Towards developing a backing layer for proton exchange membrane electrolyzers. Journal of Power Sources, 2016, 311, 153-158.	4.0	110
34	Nanostructured Ir-supported on Ti ₄ O ₇ as a cost-effective anode for proton exchange membrane (PEM) electrolyzers. Physical Chemistry Chemical Physics, 2016, 18, 4487-4495.	1.3	52
35	Comprehensive characterization and understanding of micro-fuel cells operating at high methanol concentrations. Beilstein Journal of Nanotechnology, 2015, 6, 2000-2006.	1.5	14
36	Improved Water Management with Thermally Sprayed Coatings on Stainless Steel Bipolar Plates of PEMFC. ECS Transactions, 2015, 69, 223-239.	0.3	2

Aldo Gago

#	Article	IF	CITATIONS
37	Low Cost Bipolar Plates for Large Scale PEM Electrolyzers. ECS Transactions, 2014, 64, 1039-1048.	0.3	28
38	Photohole Trapping Induced Platinum Cluster Nucleation on the Surface of TiO ₂ Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 1111-1117.	1.5	13
39	Performance Study of Platinum Nanoparticles Supported onto MWCNT in a Formic Acid Microfluidic Fuel Cell System. Journal of the Electrochemical Society, 2013, 160, F859-F866.	1.3	20
40	Tailoring and Tuning the Tolerance of a Pt Chalcogenide Cathode Electrocatalyst to Methanol. ChemCatChem, 2013, 5, 701-705.	1.8	9
41	Tailoring nanostructured catalysts for electrochemical energy conversion systems. Nanotechnology Reviews, 2012, 1, 427-453.	2.6	13
42	Tolerant Chalcogenide Cathodes of Membraneless Micro Fuel Cells. ChemSusChem, 2012, 5, 1488-1494.	3.6	50
43	Oxygen reduction reaction increased tolerance and fuel cell performance of Pt and RuxSey onto oxide–carbon composites. Journal of Power Sources, 2011, 196, 4290-4297.	4.0	34
44	Chalcogenide metal centers for oxygen reduction reaction: Activity and tolerance. Electrochimica Acta, 2011, 56, 1009-1022.	2.6	114
45	Protective Coatings for Low-Cost Bipolar Plates and Current Collectors of Proton Exchange Membrane Electrolyzers for Large Scale Energy Storage from Renewables. , 0, , .		6