Qingming Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9570218/publications.pdf

Version: 2024-02-01

73 1,055
papers citations

18 28
h-index g-index

73 73 all docs citations

73 times ranked 544 citing authors

#	Article	IF	CITATIONS
1	Enhanced temperature coefficient of resistance and magnetoresistance of Co-doped La0.67Ca0.33MnO3 polycrystalline ceramics. Ceramics International, 2022, 48, 407-414.	4.8	8
2	Effect of La-site substitution on the magnetoelectric transport properties of La0.7Ca0.3MnO3 polycrystalline ceramics. Ceramics International, 2022, 48, 17425-17432.	4.8	3
3	An Antifatigue Liquid Metal Composite Electrode Ionic Polymer-Metal Composite Artificial Muscle with Excellent Electromechanical Properties. ACS Applied Materials & Samp; Interfaces, 2022, 14, 14630-14639.	8.0	17
4	Effect of Fe substitution on temperature coefficient of resistance and magnetoresistance of LaO.67CaO.33MnO3 polycrystalline ceramics. Ceramics International, 2022, 48, 8169-8176.	4.8	5
5	Structural, electrical, and magnetic transport properties of La0.72Ca0.28Mn1â^Cr O3 (0 ≤ ≤0.06) ceramics. Ceramics International, 2022, 48, 21187-21193.	4.8	4
6	Adjusting the K-doping of La1-K MnO3 (0.1Ââ‰ÂxÂâ‰Â0.35) films to obtain high TCR and LFMR at room-temperature. Applied Surface Science, 2022, 589, 152905.	6.1	10
7	Effect of deposition time on electrical properties of La0.67Ca0.33MnO3:Ag0.2 thin films by pulsed laser deposition. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	2.3	1
8	Impact of the transition metal ion-doped on the electrical and magnetic properties of La0.67Ca0.33MnO3Ag0.15-based polycrystalline ceramics. Advanced Powder Technology, 2022, 33, 103714.	4.1	0
9	Effect of Gd doping on electrical transport properties of La0.8Sr0.2MnO3 polycrystalline ceramics. Ceramics International, 2021, 47, 5944-5950.	4.8	3
10	High-performance bio-based epoxies from ferulic acid and furfuryl alcohol: synthesis and properties. Green Chemistry, 2021, 23, 1772-1781.	9.0	38
11	Improved roomâ€temperature TCR and MR of La0.9â^'xKxCa0.1MnO3 ceramics by A-sites vacancy and disorder degree adjustment. Journal of Materials Science: Materials in Electronics, 2021, 32, 8848-8862.	2.2	8
12	Effect of sintering temperature on structure and electrical transport properties of La0.7Ca0.26Na0.04MnO3 ceramics. Ceramics International, 2021, 47, 12716-12724.	4.8	7
13	Exploring the electrical transport properties of La0.67Ca0.33MnO3 at different sintering temperatures. Journal of Materials Science: Materials in Electronics, 2021, 32, 14164-14173.	2.2	3
14	La0.7Ca0.3-xNaxMnO3 polycrystalline with high magnetoresistance and temperature coefficient of resistance were prepared via theÂsol–gel method. Journal of Materials Science: Materials in Electronics, 2021, 32, 18397-18407.	2.2	1
15	La1â^'Ca MnO3:Ag0.2 (0.25 ≤ ≤0.31) ceramics with high temperature coefficient of resistivity under magnetic field. Ceramics International, 2021, 47, 19659-19667.	4.8	11
16	Enhancement of magnetoresistance and near room-temperature temperature coefficient of resistivity in polycrystalline La0.7Ca0.24Na0.06MnO3 by silver doping. Journal of Sol-Gel Science and Technology, 2021, 99, 627-635.	2.4	4
17	Electrical properties of La0.72Ca0.28MnO3: Ag0.2 thin films of different deposition time prepared by deposited pulsed laser method. Journal of Materials Science: Materials in Electronics, 2021, 32, 22999-23006.	2.2	О
18	Electrical transport properties of Sm-doped La0.7Ca0.3MnO3 polycrystalline ceramics. Ceramics International, 2021, 47, 25281-25286.	4.8	5

#	Article	IF	CITATIONS
19	Colossal magnetoresistive polycrystalline La0.61Sm0.06Ca0.33MnO3 with large and unperturbed temperature coefficient of resistivity under a magnetic field. Ceramics International, 2021, 47, 30671-30676.	4.8	3
20	Large temperature coefficient of resistance and magnetoresistance of La0.71Ca0.29Mn1-Co O3 polycrystalline ceramics. Ceramics International, 2021, 47, 32097-32103.	4.8	4
21	Robust temperature coefficient of resistance of polycrystalline La0.6Ca0.4MnO3 under magnetic fields at room temperature. Ceramics International, 2021, 47, 29631-29637.	4.8	3
22	Influence of different post-annealing temperatures on physical properties of La0.72Ca0.28MnO3:Ag0.2 thin films by pulsed laser deposition technique. Ceramics International, 2020, 46, 6418-6423.	4.8	7
23	Utilization of metallic Ag and Ag ⁺ ions to optimize room-temperature TCR and MR of La _{0.7} (Ca _{0.205} Sr _{0.095})MnO ₃ : <i>x</i> Ag ₂ O composites. Journal of Materials Chemistry C, 2020, 8, 17054-17064.	5.5	24
24	Effect of annealing temperature on electrical and magnetic properties of La0.7Ca0.3MnO3:Ag0.2 thin films. Ceramics International, 2020, 46, 27951-27956.	4.8	1
25	Effect of sintering temperature on structural and electrical transport properties of La0.7Ca0.28K0.02MnO3 ceramics. Ceramics International, 2020, 46, 25949-25955.	4.8	12
26	Effect of V doping on electrical and magnetic properties of La0.71Ca0.29MnO3 polycrystalline ceramics. Journal of Materials Science: Materials in Electronics, 2020, 31, 10355-10365.	2.2	4
27	Effect of different post-annealing durations on electromagnetic properties of La0.67Ca0.33MnO3:Ag0.2 thin films prepared by pulsed laser deposition. Ceramics International, 2020, 46, 20272-20276.	4.8	O
28	Effect of A-site cationic radius on ceramic La0.67â^'xDyxSr0.33MnO3 prepared by solâ€"gel technique. Journal of Materials Science: Materials in Electronics, 2020, 31, 7623-7629.	2.2	1
29	Effect of Y doping on transport properties of La0.8Sr0.2MnO3 polycrystalline ceramics. Ceramics International, 2020, 46, 11950-11954.	4.8	7
30	Electrical and magnetic properties of La1-Ag MnO3 (0 ≤ ≤0.5) polycrystalline ceramics by combination of first principles calculations and experimental methods. Journal of Alloys and Compounds, 2019, 808, 151709.	5.5	17
31	La0.67(Ca0.24Sr0.09)MnO3:xAg2O (0â€â‰æ€xâ€â‰æ€0.25) composites with improved room–temperature for advanced uncooling infrared bolometers and magnetic sensors. Applied Surface Science, 2019, 493, 448-457.	e TCR and	MR 31
32	Influence of Ag on TCR and MR of La0.7(Ca0.27Sr0.03)MnO3:Ag0.2 ceramics subjected to cross magnetic fields. Ceramics International, 2019, 45, 20396-20404.	4.8	8
33	Electrical transport and magnetoresistive properties of Nd-doped La0.8Sr0.2MnO3 ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 19035-19042.	2.2	3
34	LaO·7CaO.3â^'Sr MnO3:AgO.2 (0.0165 â‰弊 â‰璥.1) ceramics with large and stable TCR in different magnetic field environments. Ceramics International, 2019, 45, 24742-24749.	4.8	9
35	Improved temperature coefficient of resistance in La1-Ca MnO3:Ag0.2 (0.25 ≤≤0.33) ceramics prepared by sol–gel method. Journal of Alloys and Compounds, 2019, 800, 64-71.	5.5	9
36	Electrical and magnetic properties of La1â^'Sr MnO3 (0.1 ≤≤0.25) ceramics prepared by sol–gel technique. Ceramics International, 2019, 45, 16323-16330.	4.8	35

#	Article	lF	CITATIONS
37	Structure and electromagnetic properties of La0.7Ca0.3-K MnO3 polycrystalline ceramics. Ceramics International, 2019, 45, 10558-10564.	4.8	36
38	Modulation of room-temperature TCR and MR in La1â^'xSrxMnO3 polycrystalline ceramics via Sr doping. Journal of Sol-Gel Science and Technology, 2019, 90, 221-229.	2.4	23
39	Electrical transport properties and enhanced broad-temperature-range low field magnetoresistance in LCMO ceramics by Sm2O3 adding. Journal of Alloys and Compounds, 2019, 790, 240-247.	5.5	19
40	Influence of Ag doping on electrical and magnetic properties of La0.67Ca0.33MnO3 polycrystalline ceramics. Ceramics International, 2019, 45, 11006-11012.	4.8	35
41	Printable Liquidâ€Metal@PDMS Stretchable Heater with High Stretchability and Dynamic Stability for Wearable Thermotherapy. Advanced Materials Technologies, 2019, 4, 1800435.	5.8	92
42	La1-Sr MnO3:Ag0.2 (0.1 â‰ ≇ €‰x â‰ ≇ €‰0.2) ceramics with large room-temperature TCR for uncooled bolometers. Journal of the European Ceramic Society, 2019, 39, 352-357.	d infrared	58
43	Colossal photovoltages in strain-driven crystal field transition and symmetry breaking of superconducting epitaxial systems. Physical Review Materials, 2019, 3, .	2.4	1
44	Influence of silver addition on microstructures and transport properties of La0.67Ca0.33MnO3:Ag \times composites. Journal of Materials Science: Materials in Electronics, 2018, 29, 6167-6173.	2.2	5
45	Effects of A-site cationic radius and cationic disorder on the electromagnetic properties of La0.7Ca0.3MnO3 ceramic with added Sr, Pb, and Ba. Ceramics International, 2018, 44, 5378-5384.	4.8	30
46	Improved Curie temperature and temperature coefficient of resistance (TCR) in La0.7Ca0.3-Sr MnO3:Ag0.2 composites. Journal of Alloys and Compounds, 2018, 747, 1027-1032.	5.5	33
47	Improvement of room-temperature TCR and MR in polycrystalline La0.67(Ca0.27Sr0.06)MnO3 ceramics by Ag2O doping. Ceramics International, 2018, 44, 9865-9874.	4.8	46
48	Structure, electrical and magnetic properties of La0.67Ca0.33â^'x K x MnO3 polycrystalline ceramic. Journal of Materials Science: Materials in Electronics, 2018, 29, 1808-1816.	2.2	13
49	Effects of silver doping on structure and electrical properties of La0.67Ca0.23K0.1MnO3 polycrystalline ceramic. Ceramics International, 2018, 44, 3448-3453.	4.8	22
50	Effect of Ca-doping on electrical properties of La0.46Sm0.21Sr0.33-xCaxMnO3 ceramics prepared by sol-gel technique. Journal of Sol-Gel Science and Technology, 2018, 87, 400-407.	2.4	9
51	Preparation and properties of La0.71Ca0.29Mn1â^xCrxO3 polycrystalline composites. Journal of Materials Science: Materials in Electronics, 2018, 29, 19070-19077.	2.2	3
52	Enhanced Bidimensionalityâ€Driven Ultrahigh Laserâ€Induced Voltages in Highâ€ <i>T</i> _c Superconducting Epitaxial Films. Advanced Electronic Materials, 2018, 4, 1800116.	5.1	11
53	Improvement in structure and superconductivity of YBa 2 Cu 3 O $6+\hat{l}'$ ceramics superconductors by optimizing sintering processing. Journal of Rare Earths, 2017, 35, 85-89.	4.8	6
54	Enhancement of temperature coefficient of resistance (TCR) and Magneto-resistance (MR) in La1–x Ca x MnO3:Ag0.2 polycrystalline composites. Journal of Sol-Gel Science and Technology, 2017, 82, 193-200.	2.4	22

#	Article	IF	CITATIONS
55	Effect of Ca-doping on the electrical properties of La0.2Nd0.47Sr0.33MnO3 ceramics prepared by sol–gel technique. Journal of Sol-Gel Science and Technology, 2017, 82, 177-183.	2.4	11
56	Effect of laser energy on the electrical transport properties of La0.67Ca0.33MnO3:Ag0.2 films by pulsed laser deposition technique. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	5
57	Influence of Gd-content on the electrical transport properties of La0.67â^'x Gd x Sr0.33MnO3 polycrystalline ceramics by sol–gel method. Journal of Materials Science: Materials in Electronics, 2017, 28, 17026-17030.	2.2	0
58	Improvement in electronic and magnetic transport of La0.67Ca0.33MnO3 manganites by optimizing sintering temperature. Journal of Sol-Gel Science and Technology, 2017, 81, 177-184.	2.4	11
59	Effect of A-site cationic radius on polycrystalline ceramics La x Sm0.67â°'x Sr0.33MnO3 prepared by solâ€"gel technique. Journal of Sol-Gel Science and Technology, 2016, 80, 474-479.	2.4	11
60	Fabrication of La x Nd0.67â^'x Sr0.33MnO3 polycrystalline ceramics by solâ€"gel method. Journal of Sol-Gel Science and Technology, 2016, 80, 168-173.	2.4	16
61	Preparation of c-axis oriented YBa2Cu3O7 polycrystalline ceramics by sol–gel method. Physica C: Superconductivity and Its Applications, 2015, 511, 1-3.	1.2	5
62	Effect of Ag addition on the magnetic and electrical properties of La0.67Ca0.33MnO3 films. Applied Surface Science, 2015, 349, 983-987.	6.1	13
63	Search for high temperature coefficient of resistance La2/3Ca1/3MnO3 polycrystalline ceramics. Applied Physics A: Materials Science and Processing, 2014, 117, 2051-2055.	2.3	13
64	Enhancement of temperature coefficient of resistivity in La0.67Ca0.33MnO3 polycrystalline ceramics. Ceramics International, 2014, 40, 4963-4968.	4.8	31
65	Electrical transport properties and laser-induced voltage effect in La0.8Ca0.2MnO3 epitaxial thin films. Applied Physics A: Materials Science and Processing, 2014, 114, 1085-1090.	2.3	10
66	Effect of Ca doping level on the laser-induced voltages in tilted La1â^'x Ca x MnO3 (0.1Ââ‰ÂxÂâ‰Â0.7) thin filn Applied Physics A: Materials Science and Processing, 2014, 114, 1075-1078.	ns. 2.3	15
67	Preparation of La0.67Ca0.33MnO3:Ag x polycrystalline by sol–gel method. Journal of Sol-Gel Science and Technology, 2014, 70, 361-365.	2.4	41
68	Effects of substrate-induced-strain on the electrical properties and laser induced voltages of tilted La0.67Ca0.33MnO3 thin films. Journal of Applied Physics, 2013, 114, .	2.5	11
69	Influence of synthesis methods and calcination temperature on electrical properties of La1â°'xCaxMnO3 (x=0.33 and 0.28) ceramics. Ceramics International, 2013, 39, 7839-7843.	4.8	37
70	Structural and electrical characterization of La0.72Ca0.28MnO3 ceramic and thin films. Applied Surface Science, 2013, 264, 225-228.	6.1	9
71	Viscosity sensor using ZnO and AlN thin film bulk acoustic resonators with tilted polar $<$ i> $<$ c $<$ li>-axis orientations. Journal of Applied Physics, 2011, 110, .	2.5	44
72	Effect of Ag doping on structure and electrical properties of La0.7Ca0.26K0.04MnO3 ceramics. Journal of Sol-Gel Science and Technology, 0, , 1.	2.4	0

QINGMING CHEN

#	Article	IF	CITATIONS
73	Effect of V doping on the electrical transport and magnetoresistance properties of La0.825Sr0.175MnO3 ceramics. Journal of Sol-Gel Science and Technology, 0, , .	2.4	2