Stephen J Birkinshaw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9569988/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Demonstrating the value of community-based (â€~citizen science') observations for catchment modelling and characterisation. Journal of Hydrology, 2017, 548, 801-817.	2.3	86
2	The blue-green path to urban flood resilience. Blue-Green Systems, 2020, 2, 28-45.	0.6	70
3	The effect of forest cover on peak flow and sediment discharge—an integrated field and modelling study in central–southern Chile. Hydrological Processes, 2011, 25, 1284-1297.	1.1	67
4	45 years of non-stationary hydrology over a forest plantation growth cycle, Coalburn catchment, Northern England. Journal of Hydrology, 2014, 519, 559-573.	2.3	47
5	Graphical user interface for rapid set-up of SHETRAN physically-based river catchment model. Environmental Modelling and Software, 2010, 25, 609-610.	1.9	39
6	Dry getting drier – The future of transnational river basins in Iberia. Journal of Hydrology: Regional Studies, 2017, 12, 238-252.	1.0	25
7	Development of a system for automated setup of a physically-based, spatially-distributed hydrological model for catchments in Great Britain. Environmental Modelling and Software, 2018, 108, 102-110.	1.9	24
8	Model-based estimation of land subsidence in Kathmandu Valley, Nepal. Geomatics, Natural Hazards and Risk, 2017, 8, 974-996.	2.0	23
9	Runoff, flood peaks and proportional response in a combined nested and paired forest plantation/peat grassland catchment. Journal of Hydrology, 2018, 564, 916-927.	2.3	22
10	Improving bank erosion modelling at catchment scale by incorporating temporal and spatial variability. Earth Surface Processes and Landforms, 2018, 43, 124-133.	1.2	20
11	Improved hydrological modelling of urban catchments using runoff coefficients. Journal of Hydrology, 2021, 594, 125884.	2.3	20
12	Flood resilience, amenity and biodiversity benefits of an historic urban pond. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190389.	1.6	19
13	Flow pathways in the Slapton Wood catchment using temperature as a tracer. Journal of Hydrology, 2010, 383, 269-279.	2.3	17
14	Downscaling climate change of water availability, sediment yield and extreme events: Application to a Mediterranean climate basin. International Journal of Climatology, 2019, 39, 2947-2963.	1.5	14
15	Ecosystem services provided by urban ponds and green spaces: a detailed study of a semi-natural site with global importance for research. Blue-Green Systems, 2022, 4, 1-23.	0.6	14
16	Seasonâ€based rainfall–runoff modelling using the probabilityâ€distributed model (PDM) for large basins in southeastern Brazil. Hydrological Processes, 2018, 32, 2217-2230.	1.1	13
17	Comment on "A paradigm shift in understanding and quantifying the effects of forest harvesting on floods in snow environments―by Kim C. Green and Younes Alila. Water Resources Research, 2014, 50, 2765-2768.	1.7	9
18	Stormwater Detention Ponds in Urban Catchments—Analysis and Validation of Performance of Ponds in the Ouseburn Catchment, Newcastle upon Tyne, UK. Water (Switzerland), 2021, 13, 2521.	1.2	6

#	Article	IF	CITATIONS
19	Downscaling climate change of mean climatology and extremes of precipitation and temperature: Application to a Mediterranean climate basin. International Journal of Climatology, 2019, 39, 4985-5005.	1.5	4
20	A method to include reservoir operations in catchment hydrological models using SHETRAN. Environmental Modelling and Software, 2021, 138, 104980.	1.9	4
21	Multiple Benefits of Blue-Green Infrastructure and the Reduction of Environmental Risks: Case Study of Ecosystem Services Provided by a SUDS Pond. Springer Tracts in Civil Engineering, 2022, , 247-262.	0.3	2