J Tinguaro RodrÃ-guez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9569732/publications.pdf

Version: 2024-02-01

516561 526166 70 821 16 27 citations h-index g-index papers 77 77 77 538 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	n-Dimensional overlap functions. Fuzzy Sets and Systems, 2016, 287, 57-75.	1.6	99
2	<i>Arabidopsis</i> cell wall composition determines disease resistance specificity and fitness. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	88
3	General overlap functions. Fuzzy Sets and Systems, 2019, 372, 81-96.	1.6	7 5
4	A new modularity measure for Fuzzy Community detection problems based on overlap and grouping functions. International Journal of Approximate Reasoning, 2016, 74, 88-107.	1.9	67
5	Fuzzy image segmentation based upon hierarchical clustering. Knowledge-Based Systems, 2015, 87, 26-37.	4.0	50
6	A general methodology for data-based rule building and its application to natural disaster management. Computers and Operations Research, 2012, 39, 863-873.	2.4	37
7	Strictly stable families of aggregation operators. Fuzzy Sets and Systems, 2013, 228, 44-63.	1.6	31
8	A disaster-severity assessment DSS comparative analysis. OR Spectrum, 2011, 33, 451-479.	2.1	25
9	Paired structures in knowledge representation. Knowledge-Based Systems, 2016, 100, 50-58.	4.0	25
10	A natural-disaster management DSS for Humanitarian Non-Governmental Organisations. Knowledge-Based Systems, 2010, 23, 17-22.	4.0	23
11	A fuzzy and bipolar approach to preference modeling with application to need and desire. Fuzzy Sets and Systems, 2013, 214, 20-34.	1.6	23
12	Classifying image analysis techniques from their output. International Journal of Computational Intelligence Systems, 2016, 9, 43.	1.6	22
13	Consistency and stability in aggregation operators: An application to missing data problems. International Journal of Computational Intelligence Systems, 2014, 7, 595.	1.6	19
14	Development of child's home environment indexes based on consistent families of aggregation operators with prioritized hierarchical information. Fuzzy Sets and Systems, 2014, 241, 41-60.	1.6	16
15	Intelligent Decision-Making Models for Disaster Management. Human and Ecological Risk Assessment (HERA), 2015, 21, 1341-1360.	1.7	16
16	Approaches to learning strictly-stable weights for data with missing values. Fuzzy Sets and Systems, 2017, 325, 97-113.	1.6	16
17	Computable aggregations. Information Sciences, 2018, 460-461, 439-449.	4.0	16
18	An ordinal approach to computing with words and the preference–aversion model. Information Sciences, 2014, 258, 239-248.	4.0	12

#	Article	IF	CITATIONS
19	Building the meaning of preference from logical paired structures. Knowledge-Based Systems, 2015, 83, 32-41.	4.0	10
20	Another paraconsistent algebraic semantics for Lukasiewicz–Pavelka logic. Fuzzy Sets and Systems, 2014, 242, 132-147.	1.6	9
21	On the Semantics of Bipolarity and Fuzziness. Advances in Intelligent and Soft Computing, 2011, , 193-205.	0.2	9
22	FORMAL SPECIFICATION AND IMPLEMENTATION OF COMPUTATIONAL AGGREGATION FUNCTIONS. , 2010, , .		8
23	Computational intelligence in decision making. International Journal of Computational Intelligence Systems, 2014, 7, 1-5.	1.6	8
24	Affective homogeneity in the Spanish general election debate. A comparative analysis of social networks political agents. Information, Communication and Society, 2020, 23, 216-233.	2.6	8
25	Churn and Net Promoter Score forecasting for business decision-making through a new stepwise regression methodology. Knowledge-Based Systems, 2020, 196, 105762.	4.0	7
26	Stability in Aggregation Operators. Communications in Computer and Information Science, 2012, , 317-325.	0.4	7
27	Fuzzy Clustering Methods with Rényi Relative Entropy and Cluster Size. Mathematics, 2021, 9, 1423.	1.1	6
28	Aggregation tools for the evaluation of classifications. , 2017, , .		5
29	A novel edge detection algorithm based on a hierarchical graph-partition approach. Journal of Intelligent and Fuzzy Systems, 2018, 34, 1875-1892.	0.8	5
30	On Partial Comparability and Fuzzy Preference-Aversion Models. Advances in Intelligent and Soft Computing, 2011, , 307-316.	0.2	5
31	Fuzzy Community detection based on grouping and overlapping functions. , 0, , .		5
32	A computational definition of aggregation rules. , 2010, , .		4
33	Information measures over intuitionistic four valued fuzzy preferences. , 2010, , .		4
34	Rule-based classification by means of bipolar criteria., 2011,,.		4
35	Fuzzy Image Segmentation Based on the Hierarchical Divide and Link Clustering Algorithm. , 2015, , .		4
36	Learning preferences from paired opposite-based semantics. International Journal of Approximate Reasoning, 2017, 86, 80-91.	1.9	4

#	Article	IF	CITATIONS
37	A bipolar knowledge representation model to improve supervised fuzzy classification algorithms. Soft Computing, 2018, 22, 5121-5146.	2.1	4
38	Automatic Detection of Thistle-Weeds in Cereal Crops from Aerial RGB Images. Communications in Computer and Information Science, 2018, , 441-452.	0.4	3
39	Types of Recursive Computable Aggregations. , 2019, , .		3
40	A DECISION SUPPORT TOOL FOR HUMANITARIAN OPERATIONS IN NATURAL DISASTER RELIEF. , 2008, , .		3
41	Relevance of Classes in a Fuzzy Partition. A Study from a Group of Aggregation Operators. Communications in Computer and Information Science, 2018, , 96-107.	0.4	2
42	Paired Structures, Imprecision Types and Two-Level Knowledge Representation by Means of Opposites. Advances in Intelligent Systems and Computing, 2016, , 3-15.	0.5	2
43	Aggregation Operators to Evaluate the Relevance of Classes in a Fuzzy Partition. Advances in Intelligent Systems and Computing, 2019, , 13-21.	0.5	2
44	Modelling bipolar multicriteria decision making. , 2009, , .		1
45	Paired fuzzy sets and other opposite-based models. , 2016, , .		1
46	Evaluation of the quality and relevance of a fuzzy partition. Journal of Intelligent and Fuzzy Systems, 2020, 39, 4211-4226.	0.8	1
47	Modelling Interaction Effects by Using Extended WOE Variables with Applications to Credit Scoring. Mathematics, 2021, 9, 1903.	1.1	1
48	A characterization of reciprocal fuzzy preference structures and its compatibility with standard fuzzy preference structures. Fuzzy Sets and Systems, 2021, 422, 48-67.	1.6	1
49	Paired Structures and other opposites-based models. , 0, , .		1
50	Rectification of Preferences in a Fuzzy Environment. Communications in Computer and Information Science, 2010, , 168-178.	0.4	1
51	Fuzzy Dissimilarity-Based Classification for Disaster Initial Assessment. , 2013, , .		1
52	Consistency and Stability in Aggregation Operators: An Application to Missing Data Problems. Advances in Intelligent Systems and Computing, 2013, , 507-518.	0.5	1
53	Relevance in Preference Structures. Advances in Intelligent Systems and Computing, 2014, , 117-125.	0.5	1
54	Paired Structures in Logical and Semiotic Models of Natural Language. Communications in Computer and Information Science, 2014, , 566-575.	0.4	1

#	Article	IF	CITATIONS
55	A fuzzy edge-based image segmentation approach. , 0, , .		1
56	Consistency and stability in aggregation operators with data structure. , 2013, , .		0
57	Paired fuzzy sets: A unifying model for early knowledged acquisition. , 2015, , .		0
58	A NEW VIEW ON THE RELATIONSHIPS BETWEEN INTERVAL VALUED AND INTUITIONISTIC FUZZY SETS. , 2016, , .		0
59	Improving Supervised Classification Algorithms by a Bipolar Knowledge Representation. Advances in Intelligent Systems and Computing, 2018, , 518-529.	0.5	O
60	Relational structures for measures of ignorance., 2011,,.		0
61	DISSIMILARITY-BASED BIPOLAR SUPERVISED CLASSIFICATION. World Scientific Proceedings Series on Computer Engingeering and Information Science, 2012, , 894-899.	0.1	O
62	Neutrality in Bipolar Structures. Advances in Intelligent Systems and Computing, 2014, , 11-17.	0.5	0
63	BIPOLARITY IN SOCIAL SCIENCES AND MATHEMATICS., 2014, , .		O
64	Two Consistent Many-Valued Logics for Paraconsistent Phenomena. Springer Proceedings in Mathematics and Statistics, 2015, , 185-210.	0.1	0
65	From Trillas' Negations and Antonyms to a Set Representation of Contradiction Within Bipolar and Other Extensions of Fuzzy Sets. Studies in Fuzziness and Soft Computing, 2015, , 159-177.	0.6	0
66	Graph Approach in Image Segmentation. Advances in Intelligent Systems and Computing, 2018, , 200-212.	0.5	0
67	Comparative Assessment of the Image Divide and Link Algorithm in Different Color Spaces. Tatra Mountains Mathematical Publications, 2018, 72, 31-41.	0.1	O
68	Ambiguity Measures for Preference-Based Decision Viewpoints. Lecture Notes in Computer Science, 2019, , 38-49.	1.0	0
69	Degree of Global Covering and Global Overlapping in Solvency Fuzzy Classification. Advances in Intelligent Systems and Computing, 2021, , 21-32.	0.5	O
70	A Method to Generate Soft Reference Data for Topic Identification. Communications in Computer and Information Science, 2020, , 54-67.	0.4	0