Marina Campos Rocha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9569503/publications.pdf Version: 2024-02-01

759055 887953 21 653 12 17 citations h-index g-index papers 23 23 23 611 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Heterogeneity in the transcriptional response of the human pathogen <i>Aspergillus fumigatus</i> to the antifungal agent caspofungin. Genetics, 2022, 220, .	1.2	15
2	<i>Aspergillus fumigatus</i> Hsp90 interacts with the main components of the cell wall integrity pathway and cooperates in heat shock and cell wall stress adaptation. Cellular Microbiology, 2021, 23, e13273.	1.1	20
3	Novel Biological Functions of the NsdC Transcription Factor in Aspergillus fumigatus. MBio, 2021, 12, .	1.8	10
4	Transcriptional Control of the Production of Aspergillus fumigatus Conidia-Borne Secondary Metabolite Fumiquinazoline C Important for Phagocytosis Protection. Genetics, 2021, 218, .	1.2	1
5	The Heat Shock Transcription Factor HsfA Is Essential for Thermotolerance and Regulates Cell Wall Integrity in Aspergillus fumigatus. Frontiers in Microbiology, 2021, 12, 656548.	1.5	14
6	Aspergillus Fumigatus ZnfA, a Novel Zinc Finger Transcription Factor Involved in Calcium Metabolism and Caspofungin Tolerance. Frontiers in Fungal Biology, 2021, 2, .	0.9	0
7	Aspergillus fumigatus G-Protein Coupled Receptors GprM and GprJ Are Important for the Regulation of the Cell Wall Integrity Pathway, Secondary Metabolite Production, and Virulence. MBio, 2020, 11, .	1.8	11
8	Aspergillus fumigatus Transcription Factors Involved in the Caspofungin Paradoxical Effect. MBio, 2020, 11, .	1.8	29
9	The Cell Wall Integrity Pathway Contributes to the Early Stages of <i>Aspergillus fumigatus</i> Asexual Development. Applied and Environmental Microbiology, 2020, 86, .	1.4	20
10	Mitogen-Activated Protein Kinase Cross-Talk Interaction Modulates the Production of Melanins in Aspergillus fumigatus. MBio, 2019, 10, .	1.8	56
11	Aspergillus fumigatus calcium-responsive transcription factors regulate cell wall architecture promoting stress tolerance, virulence and caspofungin resistance. PLoS Genetics, 2019, 15, e1008551.	1.5	34
12	Title is missing!. , 2019, 15, e1008551.		0
13	Title is missing!. , 2019, 15, e1008551.		0
14	Title is missing!. , 2019, 15, e1008551.		0
15	Analyses of the three 1-Cys Peroxiredoxins from Aspergillus fumigatus reveal that cytosolic Prx1 is central to H2O2 metabolism and virulence. Scientific Reports, 2018, 8, 12314.	1.6	52
16	The AGC Kinase YpkA Regulates Sphingolipids Biosynthesis and Physically Interacts With SakA MAP Kinase in Aspergillus fumigatus. Frontiers in Microbiology, 2018, 9, 3347.	1.5	15
17	The <i>Aspergillus fumigatus</i> CrzA Transcription Factor Activates Chitin Synthase Gene Expression during the Caspofungin Paradoxical Effect. MBio, 2017, 8,	1.8	64
18	Mitogen activated protein kinases SakA ^{HOG1} and MpkC collaborate for <i>Aspergillus fumigatus</i> virulence. Molecular Microbiology, 2016, 100, 841-859.	1.2	110

#	Article	IF	CITATIONS
19	<i>Aspergillus fumigatus</i> MADS-Box Transcription Factor <i>rlmA</i> Is Required for Regulation of the Cell Wall Integrity and Virulence. G3: Genes, Genomes, Genetics, 2016, 6, 2983-3002.	0.8	83
20	The Aspergillus fumigatus pkcAG579R Mutant Is Defective in the Activation of the Cell Wall Integrity Pathway but Is Dispensable for Virulence in a Neutropenic Mouse Infection Model. PLoS ONE, 2015, 10, e0135195.	1.1	51
21	The Aspergillus fumigatus sitA Phosphatase Homologue Is Important for Adhesion, Cell Wall Integrity, Biofilm Formation, and Virulence. Eukaryotic Cell, 2015, 14, 728-744.	3.4	66