Gang Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9569186/publications.pdf

Version: 2024-02-01

411340 445137 1,306 60 20 33 h-index citations g-index papers 62 62 62 1496 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	T cellâ€derived exosomes containing cytokines induced keratinocytes apoptosis in oral lichen planus. Oral Diseases, 2022, 28, 682-690.	1.5	12
2	Characterization and function of circulating mucosalâ€associated invariant T cells and γÎT cells in oral lichen planus. Journal of Oral Pathology and Medicine, 2022, 51, 74-85.	1.4	12
3	Glaucocalyxin A impairs tumor growth via amplification of the ATF4/CHOP/CHAC1 cascade in human oral squamous cell carcinoma. Journal of Ethnopharmacology, 2022, 290, 115100.	2.0	9
4	Melatonin relieves Th17/CD4â^'CD8â^' T cells inflammatory responses via nuclear-receptor dependent manner in peripheral blood of primary Sjögren's syndrome. International Immunopharmacology, 2022, 109, 108778.	1.7	3
5	Difficult and complicated oral ulceration: an expert consensus guideline for diagnosis. International Journal of Oral Science, 2022, 14, .	3.6	10
6	MAIT cells and their implication in human oral diseases. Inflammation Research, 2022, 71, 1041-1054.	1.6	6
7	The CXCL11 XCR3A axis influences the infiltration of CD274 and IDO1 in oral squamous cell carcinoma. Journal of Oral Pathology and Medicine, 2021, 50, 362-370.	1.4	7
8	One-step quantification of salivary exosomes based on combined aptamer recognition and quantum dot signal amplification. Biosensors and Bioelectronics, 2021, 171, 112733.	5.3	45
9	Targeting CD47 Inhibits Tumor Development and Increases Phagocytosis in Oral Squamous Cell Carcinoma. Anti-Cancer Agents in Medicinal Chemistry, 2021, 21, 766-774.	0.9	2
10	Interferon-γ activated T-cell IRGM–autophagy axis in oral lichen planus. International Immunopharmacology, 2021, 94, 107478.	1.7	3
11	Oral lichenoid lesions: Is it a single disease or a group of diseases?. Oral Oncology, 2021, 117, 105188.	0.8	6
12	2â€Deoxyâ€Dâ€glucose impedes T cell–induced apoptosis of keratinocytes in oral lichen planus. Journal of Cellular and Molecular Medicine, 2021, 25, 10257-10267.	1.6	7
13	Stable Loading and Delivery of Icaritin Using PEG-PCL Micelles for Effective Treatment of Oral Squamous Cell Carcinoma. Current Drug Delivery, 2021, 18, 975-983.	0.8	4
14	The Tipped Balance of ILC1/ILC2 in Peripheral Blood of Oral Lichen Planus Is Related to Inflammatory Cytokines. Frontiers in Cell and Developmental Biology, 2021, 9, 725169.	1.8	6
15	The Potential of Oxidative Stress Related Genes as Prognostic Biomarkers in Head and Neck Squamous Cell Carcinoma. Combinatorial Chemistry and High Throughput Screening, 2021, 25, .	0.6	2
16	MiR-29b interacts with IFN- \hat{I}^3 and induces DNA hypomethylation in CD4+ T cells of oral lichen planus. International Journal of Biological Macromolecules, 2020, 147, 1248-1254.	3.6	10
17	A personalized computational model predicts cancer risk level of oral potentially malignant disorders and its web application for promotion of nonâ€invasive screening. Journal of Oral Pathology and Medicine, 2020, 49, 417-426.	1.4	25
18	A nonspecific ulcer on upper lip presented as the first and sole sign of syphilis. Journal of Infection and Chemotherapy, 2020, 26, 1309-1312.	0.8	7

#	Article	IF	CITATIONS
19	Familial oral lichen planus in a 3-year-old boy: a case report with eight years of follow-up. BMC Oral Health, 2020, 20, 341.	0.8	5
20	Omega-3 polyunsaturated fatty acids: a promising approach for the management of oral lichen planus. Inflammation Research, 2020, 69, 989-999.	1.6	4
21	Heterogeneity of Outcome Measures Used in Randomized Controlled Trials for the Treatment of Oral Lichen Planus: A Methodological Study. Journal of Evidence-based Dental Practice, 2020, 20, 101468.	0.7	9
22	T cell–derived exosomes induced macrophage inflammatory proteinâ€1α/β drive the trafficking of CD8 ⁺ T cells in oral lichen planus. Journal of Cellular and Molecular Medicine, 2020, 24, 14086-14098.	1.6	13
23	Emerging functions and clinical applications of exosomes in human oral diseases. Cell and Bioscience, 2020, 10, 68.	2.1	23
24	The mTOR-glycolytic pathway promotes T-cell immunobiology in oral lichen planus. Immunobiology, 2020, 225, 151933.	0.8	14
25	HIF1α/PLD2 axis linked to glycolysis induces T-cell immunity in oral lichen planus. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129602.	1.1	5
26	Anti-PD-L1-modified and ATRA-loaded nanoparticles for immuno-treatment of oral dysplasia and oral squamous cell carcinoma. Nanomedicine, 2020, 15, 951-968.	1.7	22
27	Allâ€trans retinoic acid induces antiâ€tumor effects via STAT3 signaling inhibition in oral squamous cell carcinoma and oral dysplasia. Journal of Oral Pathology and Medicine, 2019, 48, 832-839.	1.4	11
28	Artemisinin and its derivatives: a potential therapeutic approach for oral lichen planus. Inflammation Research, 2019, 68, 297-310.	1.6	3
29	Insulin-like growth factor 1 exhibits the pro-autophagic and anti-apoptotic activity on T cells of oral lichen planus. International Journal of Biological Macromolecules, 2019, 133, 640-646.	3.6	8
30	Expression of programmed cell death-ligand 1 in oral squamous cell carcinoma and oral leukoplakia is associated with disease progress and CD8+ tumor-infiltrating lymphocytes. Pathology Research and Practice, 2019, 215, 152418.	1.0	37
31	Aberrant IGF1–PI3K/AKT/MTOR signaling pathway regulates the local immunity of oral lichen planus. Immunobiology, 2019, 224, 455-461.	0.8	23
32	Preparation and Evaluation of Dual Targeting Nanoparticles for Oral Cancer. Journal Wuhan University of Technology, Materials Science Edition, 2019, 34, 1495-1504.	0.4	0
33	Inter-and intra-observer agreement on the judgment of toluidine blue staining for screening of oral potentially malignant disorders and oral cancer. Clinical Oral Investigations, 2019, 23, 1709-1714.	1.4	7
34	Circulating exosomes regulate Tâ€cell–mediated inflammatory response in oral lichen planus. Journal of Oral Pathology and Medicine, 2019, 48, 143-150.	1.4	28
35	Deregulated phospholipase D2/mammalian target of rapamycin/hypoxia-inducible factor 1 alpha in peripheral T lymphocytes of oral lichen planus correlated with disease severity. Archives of Oral Biology, 2019, 98, 26-31.	0.8	6
36	Black pepper and its bioactive constituent piperine: promising therapeutic strategies for oral lichen planus. Inflammopharmacology, 2019, 27, 5-13.	1.9	10

#	Article	IF	CITATIONS
37	CD47 as a potential prognostic marker for oral leukoplakia and oral squamous cell carcinoma. Oncology Letters, 2018, 15, 9075-9080.	0.8	15
38	Nanotechnology: a promising method for oral cancer detection and diagnosis. Journal of Nanobiotechnology, 2018, 16, 52.	4.2	98
39	Differentially circulating exosomal microRNAs expression profiling in oral lichen planus. American Journal of Translational Research (discontinued), 2018, 10, 2848-2858.	0.0	9
40	Increased circulating <scp>CXCR</scp> 5 ⁺ <scp>CD</scp> 4 ⁺ T follicular helperâ€like cells in oral lichen planus. Journal of Oral Pathology and Medicine, 2017, 46, 803-809.	1.4	15
41	Activated Akt/mTOR-autophagy in local T cells of oral lichen planus. International Immunopharmacology, 2017, 48, 84-90.	1.7	29
42	Probiotics: A non-conventional therapy for oral lichen planus. Archives of Oral Biology, 2017, 81, 90-96.	0.8	10
43	Tumor-like microenvironment in oral lichen planus: evidence of malignant transformation?. Expert Review of Clinical Immunology, 2017, 13, 635-643.	1.3	28
44	<scp>TLR</scp> 4â€induced B7â€H1 on keratinocytes negatively regulates <scp>CD</scp> 4 ⁺ T cells and <scp>CD</scp> 8 ⁺ T cells responses in oral lichen planus. Experimental Dermatology, 2017, 26, 409-415.	1.4	16
45	Autophagy and its implication in human oral diseases. Autophagy, 2017, 13, 225-236.	4.3	59
46	Icaritin Reduces Oral Squamous Cell Carcinoma Progression via the Inhibition of STAT3 Signaling. International Journal of Molecular Sciences, 2017, 18, 132.	1.8	27
47	Signal regulatory protein \hat{l}_{\pm} associated with the progression of oral leukoplakia and oral squamous cell carcinoma regulates phenotype switch of macrophages. Oncotarget, 2016, 7, 81305-81321.	0.8	27
48	Altered Autophagy-Associated Genes Expression in T Cells of Oral Lichen Planus Correlated with Clinical Features. Mediators of Inflammation, 2016, 2016, 1-10.	1.4	22
49	Declined <scp>hTERT</scp> expression of peripheral blood <scp>CD</scp> 4 ⁺ T cells in oral lichen planus correlated with clinical parameter. Journal of Oral Pathology and Medicine, 2016, 45, 516-522.	1.4	9
50	Different Expression of MicroRNA-146a in Peripheral Blood CD4+ T Cells and Lesions of Oral Lichen Planus. Inflammation, 2016, 39, 860-866.	1.7	21
51	MicroRNA-155-IFN-Î ³ Feedback Loop in CD4+T Cells of Erosive type Oral Lichen Planus. Scientific Reports, 2015, 5, 16935.	1.6	42
52	Meta-analysis of two computer-assisted screening methods for diagnosing oral precancer and cancer. Oral Oncology, 2015, 51, 966-975.	0.8	12
53	Inflammationâ€related cytokines in oral lichen planus: an overview. Journal of Oral Pathology and Medicine, 2015, 44, 1-14.	1.4	131
54	Overexpression and Selectively Regulatory Roles of IL-23/IL-17 Axis in the Lesions of Oral Lichen Planus. Mediators of Inflammation, 2014, 2014, 1-12.	1.4	65

#	Article	IF	CITATIONS
55	HBO: A possible supplementary therapy for oral potentially malignant disorders. Medical Hypotheses, 2014, 83, 131-136.	0.8	11
56	Increasing CCL5/CCR5 on CD4+ T cells in peripheral blood of oral lichen planus. Cytokine, 2013, 62, 141-145.	1.4	56
57	Green tea consumption: an alternative approach to managing oral lichen planus. Inflammation Research, 2012, 61, 535-539.	1.6	27
58	Increased B7-H1 Expression on Peripheral Blood T Cells in Oral Lichen Planus Correlated with Disease Severity. Journal of Clinical Immunology, 2012, 32, 794-801.	2.0	69
59	Expression of T-bet and GATA-3 in peripheral blood mononuclear cells of patients with oral lichen planus. Archives of Oral Biology, 2011, 56, 499-505.	0.8	39
60	Activation of nuclear factorâ€kappa B correlates with tumor necrosis factorâ€alpha in oral lichen planus: a clinicopathologic study in atrophicâ€erosive and reticular form. Journal of Oral Pathology and Medicine, 2009, 38, 559-564.	1.4	61