
Inge S Fomsgaard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9569074/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Data-dependent acquisition-mass spectrometry guided isolation of new benzoxazinoids from the roots of Acanthus mollis L. International Journal of Mass Spectrometry, 2022, 474, 116815.	1.5	4
2	An inverse association between plasma benzoxazinoid metabolites and PSA after rye intake in men with prostate cancer revealed with a new method. Scientific Reports, 2022, 12, 5260.	3.3	3
3	Integrated LC–MS and GC–MS-Based Metabolomics Reveal the Effects of Plant Competition on the Rye Metabolome. Journal of Agricultural and Food Chemistry, 2022, 70, 3056-3066.	5.2	13
4	Optimised extraction and LC-MS/MS analysis of flavonoids reveal large field variation in exudation intexudation into Lupinus Angustifolius L. rhizosphere soil. Rhizosphere, 2022, 22, 100516.	3.0	5
5	Fusarium oxysporum Disrupts Microbiome-Metabolome Networks in Arabidopsis thaliana Roots. Microbiology Spectrum, 2022, 10, .	3.0	8
6	Dietary quercetin impacts the concentration of pesticides in honey bees. Chemosphere, 2021, 262, 127848.	8.2	24
7	Stepwise mass spectrometryâ€based approach for confirming the presence of benzoxazinoids in herbs and vegetables. Phytochemical Analysis, 2021, 32, 283-297.	2.4	4
8	Seed inoculations with entomopathogenic fungi affect aphid populations coinciding with modulation of plant secondary metabolite profiles across plant families. New Phytologist, 2021, 229, 1715-1727.	7.3	38
9	Targeted metabolomics unveil alteration in accumulation and root exudation of flavonoids as a response to interspecific competition. Journal of Plant Interactions, 2021, 16, 53-63.	2.1	14
10	LC–MS/MS Quantification Reveals Ample Gut Uptake and Metabolization of Dietary Phytochemicals in Honey Bees (<i>Apis mellifera</i>). Journal of Agricultural and Food Chemistry, 2021, 69, 627-637.	5.2	7
11	Benzoxazinoids selectively affect maize root-associated nematode taxa. Journal of Experimental Botany, 2021, 72, 3835-3845.	4.8	15
12	Benzoxaxinoids Are Inversely Associated With Prostate-Specific Antigen Levels- a Whole Grain Rye vs Refined Wheat Randomized Cross-Over Trial in Men With Prostate Cancer. Current Developments in Nutrition, 2021, 5, 482.	0.3	0
13	Metabolomics unveils the influence of dietary phytochemicals on residual pesticide concentrations in honey bees. Environment International, 2021, 152, 106503.	10.0	32
14	Metabolic profiling of benzoxazinoids in the roots and rhizosphere of commercial winter wheat genotypes. Plant and Soil, 2021, 466, 467-489.	3.7	15
15	Barley Nepenthesin-Like Aspartic Protease HvNEP-1 Degrades Fusarium Phytase, Impairs Toxin Production, and Suppresses the Fungal Growth. Frontiers in Plant Science, 2021, 12, 702557.	3.6	0
16	Determination of the Effect of Co-cultivation on the Production and Root Exudation of Flavonoids in Four Legume Species Using LC–MS/MS Analysis. Journal of Agricultural and Food Chemistry, 2021, 69, 9208-9219.	5.2	17
17	Mass spectrometryâ€based metabolomics unravel the transfer of bioactive compounds between rye and neighbouring plants. Plant, Cell and Environment, 2021, 44, 3492-3501.	5.7	5
18	Analytical Methods for Quantification and Identification of Intact Glucosinolates in Arabidopsis Roots Using LC-QqQ(LIT)-MS/MS. Metabolites, 2021, 11, 47.	2.9	11

INGE S FOMSGAARD

#	Article	IF	CITATIONS
19	Root-Exuded Benzoxazinoids: Uptake and Translocation in Neighboring Plants. Journal of Agricultural and Food Chemistry, 2020, 68, 10609-10617.	5.2	25
20	Mass Spectrometry-Based Metabolomics Reveals a Concurrent Action of Several Chemical Mechanisms in <i>Arabidopsis-Fusarium oxysporum</i> Compatible and Incompatible Interactions. Journal of Agricultural and Food Chemistry, 2020, 68, 15335-15344.	5.2	6
21	Overexpression of Nepenthesin HvNEP-1 in Barley Endosperm Reduces Fusarium Head Blight and Mycotoxin Accumulation. Agronomy, 2020, 10, 203.	3.0	11
22	Identification of Azoxystrobin Glutathione Conjugate Metabolites in Maize Roots by LC-MS. Molecules, 2019, 24, 2473.	3.8	5
23	Maize synthesized benzoxazinoids affect the host associated microbiome. Microbiome, 2019, 7, 59.	11.1	185
24	Influence of the growing conditions on the flavonoids and phenolic acids accumulation in amaranth (Amaranthus hypochondriacus L.) leaves Terra Latinoamericana, 2019, 37, 449.	0.3	6
25	Weed suppressive traits of winter cereals: Allelopathy and competition. Biochemical Systematics and Ecology, 2018, 76, 35-41.	1.3	23
26	Maize root culture as a model system for studying azoxystrobin biotransformation in plants. Chemosphere, 2018, 195, 624-631.	8.2	7
27	Effect of Tillage Systems on the Dissipation of Prosulfocarb Herbicide. Weed Technology, 2018, 32, 195-204.	0.9	2
28	Weed suppression by Canadian spring cereals: relative contribution of competition for resources and allelopathy. Chemoecology, 2018, 28, 183-187.	1.1	5
29	Sorption and degradation of neonicotinoid insecticides in tropical soils. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2018, 53, 587-594.	1.5	37
30	Multiple effects of secondary metabolites on amino acid cycling in white clover rhizosphere. Soil Biology and Biochemistry, 2018, 123, 54-63.	8.8	30
31	Weed suppression by winter cereals: relative contribution of competition for resources and allelopathy. Chemoecology, 2018, 28, 109-121.	1.1	18
32	Quantitative analysis of absorption, metabolism, and excretion of benzoxazinoids in humans after the consumption of high- and low-benzoxazinoid diets with similar contents of cereal dietary fibres: a crossover study. European Journal of Nutrition, 2017, 56, 387-397.	4.6	14
33	Biosynthesis and chemical transformation of benzoxazinoids in rye during seed germination and the identification of a rye Bx6-like gene. Phytochemistry, 2017, 140, 95-107.	2.9	33
34	Alterations of the Benzoxazinoid Profiles of Uninjured Maize Seedlings During Freezing, Storage, and Lyophilization. Journal of Agricultural and Food Chemistry, 2017, 65, 4103-4110.	5.2	8
35	Quantification of azoxystrobin and identification of two novel metabolites in lettuce via liquid chromatography–quadrupole-linear ion trap (QTRAP) mass spectrometry. International Journal of Environmental Analytical Chemistry, 2017, 97, 419-430.	3.3	12
36	Liquid chromatography-tandem mass spectrometry method for simultaneous quantification of azoxystrobin and its metabolites, azoxystrobin free acid and 2-hydroxybenzonitrile, in greenhouse-grown lettuce. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2017, 34, 2173-2180.	2.3	5

INGE S FOMSGAARD

#	Article	IF	CITATIONS
37	Biphenyl Columns Provide Good Separation of the Glucosides of DIMBOA and DIM2BOA. Natural Product Communications, 2017, 12, 1934578X1701200.	0.5	6
38	Bioactive small molecules in commercially available cereal food: Benzoxazinoids. Journal of Food Composition and Analysis, 2017, 64, 213-222.	3.9	9
39	Profiling and Metabolism of Sterols in the Weaver Ant Genus Oecophylla. Natural Product Communications, 2016, 11, 1934578X1601100.	0.5	Ο
40	Dissipation kinetics of asparagine in soil measured by compound-specific analysis with metabolite tracking. Biology and Fertility of Soils, 2016, 52, 911-916.	4.3	5
41	Identification and Quantification of Loline-Type Alkaloids in Endophyte-Infected Grasses by LC-MS/MS. Journal of Agricultural and Food Chemistry, 2016, 64, 6212-6218.	5.2	15
42	Benzoxazinoids in Prostate Cancer Patients after a Rye-Intensive Diet: Methods and Initial Results. Journal of Agricultural and Food Chemistry, 2016, 64, 8235-8245.	5.2	16
43	Direct acquisition of organic N by white clover even in the presence of inorganic N. Plant and Soil, 2016, 407, 91-107.	3.7	31
44	Correlation of Deoxynivalenol Accumulation in Fusarium-Infected Winter and Spring Wheat Cultivars with Secondary Metabolites at Different Growth Stages. Journal of Agricultural and Food Chemistry, 2016, 64, 4545-4555.	5.2	21
45	Urea in Weaver Ant Feces: Quantification and Investigation of the Uptake and Translocation of Urea in Coffea arabica. Journal of Plant Growth Regulation, 2016, 35, 803-814.	5.1	8
46	Dietary exposure to benzoxazinoids enhances bacteriaâ€induced monokine responses by peripheral blood mononuclear cells. Molecular Nutrition and Food Research, 2015, 59, 2190-2198.	3.3	2
47	Metabolic Profiling of Arabidopsis Thaliana Reveals Herbicide- and Allelochemical-Dependent Alterations Before They Become Apparent in Plant Growth. Journal of Plant Growth Regulation, 2015, 34, 96-107.	5.1	5
48	Benzoxazinoids: Cereal phytochemicals with putative therapeutic and healthâ€protecting properties. Molecular Nutrition and Food Research, 2015, 59, 1324-1338.	3.3	71
49	Are ant feces nutrients for plants? A metabolomics approach to elucidate the nutritional effects on plants hosting weaver ants. Metabolomics, 2015, 11, 1013-1028.	3.0	10
50	2,4-Dihydroxy-7-methoxy-2 H -1,4-benzoxazin-3(4 H)-one (DIMBOA) inhibits trichothecene production by Fusarium graminearum through suppression of Tri6 expression. International Journal of Food Microbiology, 2015, 214, 123-128.	4.7	34
51	Application of the QuEChERS procedure and LC–MS/MS for the assessment of neonicotinoid insecticide residues in cocoa beans and shells. Journal of Food Composition and Analysis, 2015, 44, 149-157.	3.9	43
52	Threshold response of stomatal closing ability to leaf abscisic acid concentration during growth. Journal of Experimental Botany, 2014, 65, 4361-4370.	4.8	61
53	Quantification of neonicotinoid insecticide residues in soils from cocoa plantations using a QuEChERS extraction procedure and LC-MS/MS. Science of the Total Environment, 2014, 499, 276-283.	8.0	83
54	Foliar abscisic acid content underlies genotypic variation in stomatal responsiveness after growth at high relative air humidity. Annals of Botany, 2013, 112, 1857-1867.	2.9	45

INGE S FOMSGAARD

#	Article	IF	CITATIONS
55	Nutritional composition of minor indigenous fruits: Cheapest nutritional source for the rural people of Bangladesh. Food Chemistry, 2013, 140, 466-470.	8.2	42
56	The Response of <i>Arabidopsis</i> to Co-cultivation with Clover. ACS Symposium Series, 2013, , 189-201.	0.5	4
57	Phenolic Acids from Wheat Show Different Absorption Profiles in Plasma: A Model Experiment with Catheterized Pigs. Journal of Agricultural and Food Chemistry, 2013, 61, 8842-8850.	5.2	12
58	Comparison of the levels of bioactive benzoxazinoids in different wheat and rye fractions and the transformation of these compounds in homemade foods. Food Chemistry, 2013, 141, 444-450.	8.2	51
59	Differences among five amaranth varieties (Amaranthus spp.) regarding secondary metabolites and foliar herbivory by chewing insects in the field. Arthropod-Plant Interactions, 2013, 7, 235-245.	1.1	26
60	Absorption and metabolic fate of bioactive dietary benzoxazinoids in humans. Molecular Nutrition and Food Research, 2013, 57, 1847-1858.	3.3	37
61	Plasma and Urine Concentrations of Bioactive Dietary Benzoxazinoids and Their Glucuronidated Conjugates in Rats Fed a Rye Bread-Based Diet. Journal of Agricultural and Food Chemistry, 2012, 60, 11518-11524.	5.2	24
62	Bioactive Benzoxazinoids in Rye Bread Are Absorbed and Metabolized in Pigs. Journal of Agricultural and Food Chemistry, 2012, 60, 2497-2506.	5.2	33
63	Phytotoxic Effect, Uptake, and Transformation of Biochanin A in Selected Weed Species. Journal of Agricultural and Food Chemistry, 2012, 60, 10715-10722.	5.2	19
64	Fate in Soil of Flavonoids Released from White Clover (<i>Trifolium repens</i> L.). Applied and Environmental Soil Science, 2012, 2012, 1-10.	1.7	39
65	Variation of Polyphenols and Betaines in Aerial Parts of Young, Field-Grown Amaranthus Genotypes. Journal of Agricultural and Food Chemistry, 2011, 59, 12073-12082.	5.2	29
66	Degradation of biochanin A in soil. Chemoecology, 2011, 21, 59-66.	1.1	6
67	Bread from common cereal cultivars contains an important array of neglected bioactive benzoxazinoids. Food Chemistry, 2011, 127, 1814-1820.	8.2	65
68	Variations in the polyphenol content of seeds of field grown Amaranthus genotypes. Food Chemistry, 2011, 129, 131-138.	8.2	57
69	Proximate composition, phenolic acids, and flavonoids characterization of commercial and wild nopal (Opuntia spp.). Journal of Food Composition and Analysis, 2010, 23, 525-532.	3.9	121
70	Phenolic Compounds in Different Barley Varieties: Identification by Tandem Mass Spectrometry (QStar) and NMR; Quantification by Liquid Chromatography Triple Quadrupole-Linear Ion Trap Mass Spectrometry (Q-Trap). Natural Product Communications, 2010, 5, 1934578X1000500.	0.5	15
71	Synthesis and Quantitation of Six Phenolic Amides in <i>Amaranthus</i> spp Journal of Agricultural and Food Chemistry, 2010, 58, 6306-6311.	5.2	32
72	Allelochemicals in Rye (<i>Secale Cereale</i> L.): Cultivar and Tissue Differences in the Production of Benzoxazinoids and Phenolic Acids. Natural Product Communications, 2009, 4, 1934578X0900400.	0.5	17

#	Article	IF	CITATIONS
73	Amaranth (Amaranthus hypochondriacus) as an alternative crop for sustainable food production: Phenolic acids and flavonoids with potential impact on its nutraceutical quality. Journal of Cereal Science, 2009, 49, 117-121.	3.7	144
74	Allelochemicals in rye (Secale cereale L.): cultivar and tissue differences in the production of benzoxazinoids and phenolic acids. Natural Product Communications, 2009, 4, 199-208.	0.5	32
75	Flavonoids in roots of white clover: interaction of arbuscular mycorrhizal fungi and a pathogenic fungus. Plant and Soil, 2008, 302, 33-43.	3.7	72
76	Biologically active secondary metabolites in white clover (Trifolium repens L.) – a review focusing on contents in the plant, plant–pest interactions and transformation. Chemoecology, 2008, 18, 129-170.	1.1	53
77	Benzoxazinoid concentrations show correlation with Fusarium Head Blight resistance in Danish wheat varieties. Biochemical Systematics and Ecology, 2008, 36, 245-259.	1.3	47
78	Fate and availability of glyphosate and AMPA in agricultural soil. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2008, 43, 365-375.	1.5	104
79	Transformation kinetics of 6-methoxybenzoxazolin-2-one in soil. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2008, 43, 1-7.	1.5	38
80	Variation in Flavonoids in Leaves, Stems and Flowers of White Clover Cultivars. Natural Product Communications, 2008, 3, 1934578X0800300.	0.5	6
81	Rebuttal on Results from the FATEALLCHEM Project. Journal of Agricultural and Food Chemistry, 2007, 55, 1645-1647.	5.2	0
82	Chemical Ecology in Wheat Plantâ``Pest Interactions. How the Use of Modern Techniques and a Multidisciplinary Approach Can Throw New Light on a Well-known Phenomenon: Allelopathy. Journal of Agricultural and Food Chemistry, 2006, 54, 987-990.	5.2	42
83	Fate of Benzoxazinone Allelochemicals in Soil after Incorporation of Wheat and Rye Sprouts. Journal of Agricultural and Food Chemistry, 2006, 54, 1064-1074.	5.2	78
84	Transformation of Benzoxazinones and Derivatives and Microbial Activity in the Test Environment of Soil Ecotoxicological Tests onPoecilus cupreusandFolsomia candida. Journal of Agricultural and Food Chemistry, 2006, 54, 1086-1092.	5.2	43
85	Elucidating the Transformation Pattern of the Cereal Allelochemical 6-Methoxy-2-benzoxazolinone (MBOA) and the Trideuteriomethoxy Analogue [D3]-MBOA in Soil. Journal of Agricultural and Food Chemistry, 2006, 54, 1075-1085.	5.2	32
86	Biotransformation of 2-Benzoxazolinone to 2-Amino-(3H)-Phenoxazin-3-one and 2-Acetylamino-(3H)-Phenoxazin-3-one in Soil. Journal of Chemical Ecology, 2005, 31, 1205-1222.	1.8	52
87	Transformation products of 2-benzoxazolinone (BOA) in soil. Chemosphere, 2005, 61, 74-84.	8.2	38
88	First European interlaboratory study of the analysis of benzoxazinone derivatives in plants by liquid chromatography. Journal of Chromatography A, 2004, 1047, 69-76.	3.7	33
89	Microbial transformation products of benzoxazolinone and benzoxazinone allelochemicals––a review. Chemosphere, 2004, 54, 1025-1038.	8.2	106
90	Leaching of Pesticides Through Normalâ€Tillage and Lowâ€Tillage Soil—A Lysimeter Study. I. Isoproturon. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2003, 38, 1-18.	1.5	9

#	Article	IF	CITATIONS
91	Leaching of Pesticides Through Normalâ€Tillage and Lowâ€Tillage Soil—A Lysimeter Study. II. Glyphosate. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2003, 38, 19-35.	1.5	40
92	Comparison and evaluation of eight pesticide environmental risk indicators developed in Europe and recommendations for future use. Agriculture, Ecosystems and Environment, 2002, 90, 177-187.	5.3	161
93	Influence of microbial activity, organic carbon content, soil texture and soil depth on mineralisation rates of low concentrations of 14C-mecoprop—development of a predictive model. Ecological Modelling, 1999, 122, 45-68.	2.5	20
94	Sampling and Substrate Application Methods for Pesticide Mineralization Experiments in Undisturbed Soil Samples. International Journal of Environmental Analytical Chemistry, 1998, 70, 121-132.	3.3	3
95	Degradation of Mecoprop and Isoproturon in Soil Influence of Initial Concentration. International Journal of Environmental Analytical Chemistry, 1998, 70, 133-148.	3.3	23
96	Degradation of14câ€maneb in sediment from a Nicaraguan estuary. International Journal of Environmental Studies, 1998, 55, 175-198.	1.6	2
97	Modelling the mineralization kinetics for low concentrations of pesticides in surface and subsurface soil. Ecological Modelling, 1997, 102, 175-208.	2.5	44
98	Degradation of [14C]ethylenethiourea in surface and subsurface soil. Science of the Total Environment, 1996, 191, 271-276.	8.0	6
99	Degradation of Pesticides in Subsurface Soils, Unsaturated Zone—a Review Of Methods and Results. International Journal of Environmental Analytical Chemistry, 1995, 58, 231-245.	3.3	53
100	Lead, arsenic, cadmium and copper in Lake Asososca, Nicaragua. Science of the Total Environment, 1994, 155, 229-236.	8.0	5
101	Toxaphene and Other Organochlorine Pesticides in Fish and Sediment from Lake Xolotlán, Nicaragua. International Journal of Environmental Analytical Chemistry, 1993, 53, 297-305.	3.3	14
102	Preliminary study of 15 organochlorine pesticides in Lake Xolotlan, Nicaragua. Chemosphere, 1992, 24, 1413-1419.	8.2	7
103	Mercury contamination in Lake Xolotlán (Managua). Hydrobiological Bulletin, 1991, 25, 173-176.	0.5	5