
Frank B Sachse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9569001/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	EFHD1 ablation inhibits cardiac mitoflash activation and protects cardiomyocytes from ischemia. Journal of Molecular and Cellular Cardiology, 2022, 167, 1-14.	0.9	7
2	Confocal microscopy-based estimation of intracellular conductivities in myocardium for modeling of the normal and infarcted heart. Computers in Biology and Medicine, 2022, 146, 105579.	3.9	2
3	A High-Fidelity 3D Micromechanical Model of Ventricular Myocardium. Lecture Notes in Computer Science, 2021, 12738, 168-177.	1.0	2
4	Remodeling of t-system and proteins underlying excitation-contraction coupling in aging versus failing human heart. Npj Aging and Mechanisms of Disease, 2021, 7, 16.	4.5	6
5	Cardiac-specific deletion of voltage dependent anion channel 2 leads to dilated cardiomyopathy by altering calcium homeostasis. Nature Communications, 2021, 12, 4583.	5.8	24
6	Towards Intraoperative Quantification of Atrial Fibrosis Using Light-Scattering Spectroscopy and Convolutional Neural Networks. Sensors, 2021, 21, 6033.	2.1	1
7	Etiology-Specific Remodeling in Ventricular Tissue of Heart Failure Patients and Its Implications for Computational Modeling of Electrical Conduction. Frontiers in Physiology, 2021, 12, 730933.	1.3	0
8	Toward cardiac tissue characterization using machine learning and light-scattering spectroscopy. Journal of Biomedical Optics, 2021, 26, .	1.4	2
9	Abstract P467: Cardiac-specific Deletion Of Voltage Dependent Anion Channel 2 Leads To Dilated Cardiomyopathy By Altering Calcium Homeostasis. Circulation Research, 2021, 129, .	2.0	0
10	Toward detection of conduction tissue during cardiac surgery: Light at the end of the tunnel?. Heart Rhythm, 2020, 17, 2200-2207.	0.3	6
11	Catheter-based optical approaches for cardiovascular medicine: progress, challenges and new directions. Progress in Biomedical Engineering, 2020, 2, 032001.	2.8	2
12	Spatial Arrangement of TRPC1, 3 and 6 Channels in Rabbit Ventricular Cardiomyocytes. Biophysical Journal, 2020, 118, 415a.	0.2	0
13	Localization of the sinoatrial and atrioventricular nodal region in neonatal and juvenile ovine hearts. PLoS ONE, 2020, 15, e0232618.	1.1	1
14	Modulation of Calcium Transients in Cardiomyocytes by Transient Receptor Potential Canonical 6 Channels. Frontiers in Physiology, 2020, 11, 44.	1.3	3
15	Intraoperative localization of cardiac conduction tissue regions using real-time fibre-optic confocal microscopy: first in human trial. European Journal of Cardio-thoracic Surgery, 2020, 58, 261-268.	0.6	7
16	Location and function of transient receptor potential canonical channel 1 in ventricular myocytes. Journal of Molecular and Cellular Cardiology, 2020, 139, 113-123.	0.9	11
17	Extended Bidomain Modeling of Defibrillation: Quantifying Virtual Electrode Strengths in Fibrotic Myocardium. Frontiers in Physiology, 2019, 10, 337.	1.3	1
18	Towards Automated Quantification of Atrial Fibrosis in Images from Catheterized Fiber-Optics Confocal Microscopy Using Convolutional Neural Networks. Lecture Notes in Computer Science, 2019, 11504, 168-176.	1.0	3

#	Article	IF	CITATIONS
19	Non-RyR Calcium Leak of the Sarcoplasmic Reticulum is Governed by TRPC1 in Cardiomyocytes. Biophysical Journal, 2019, 116, 384a.	0.2	0
20	Evidence for a Heritable Contribution toÂAtrial Fibrillation Associated WithÂFibrosis. JACC: Clinical Electrophysiology, 2019, 5, 493-500.	1.3	8
21	A Matched-Filter-Based Algorithm for Subcellular Classification of T-System in Cardiac Tissues. Biophysical Journal, 2019, 116, 1386-1393.	0.2	3
22	An Imaging Protocol to Discriminate Specialized Conduction Tissue During Congenital Heart Surgery. Seminars in Thoracic and Cardiovascular Surgery, 2019, 31, 537-546.	0.4	9
23	Sarcoplasmic Reticulum Calcium Leak in Cardiomyocytes: A Contribution of TRPC1 Channels. Biophysical Journal, 2018, 114, 289a.	0.2	0
24	Structural Determinants and Biophysical Properties of hERG1 Channel Gating. , 2018, , 113-121.		0
25	Modeling effects of voltage dependent properties of the cardiac muscarinic receptor on human sinus node function. PLoS Computational Biology, 2018, 14, e1006438.	1.5	26
26	Confocal Microscopy-Based Estimation of Parameters for Computational Modeling of Electrical Conduction in the Normal and Infarcted Heart. Frontiers in Physiology, 2018, 9, 239.	1.3	24
27	Cellular electrophysiological principles that modulate secretion from synovial fibroblasts. Journal of Physiology, 2017, 595, 635-645.	1.3	16
28	Sheet-Like Remodeling of the Transverse Tubular System in Human Heart Failure Impairs Excitation-Contraction Coupling and Functional Recovery by Mechanical Unloading. Circulation, 2017, 135, 1632-1645.	1.6	80
29	Physiological and pathophysiological role of transient receptor potential canonical channels in cardiac myocytes. Progress in Biophysics and Molecular Biology, 2017, 130, 254-263.	1.4	14
30	Functional Role of TRPC1 Channels in Neonatal Cardiomyocytes. Biophysical Journal, 2017, 112, 97a.	0.2	0
31	Catheterized Fiber-Optics Confocal Microscopy of the Beating Heart In Situ. Circulation: Cardiovascular Imaging, 2017, 10, .	1.3	5
32	No fuzzy space for intracellular Na+ in healthy ventricular myocytes. Journal of General Physiology, 2017, 149, 683-687.	0.9	3
33	Remodeling of the transverse tubular system after myocardial infarction in rabbit correlates with local fibrosis: A potential role of biomechanics. Progress in Biophysics and Molecular Biology, 2017, 130, 302-314.	1.4	19
34	Computational simulations of asymmetric fluxes of large molecules through gap junction channel pores. Journal of Theoretical Biology, 2017, 412, 61-73.	0.8	10
35	Modulation of Asymmetric Flux in Heterotypic Gap Junctions by Pore Shape, Particle Size and Charge. Frontiers in Physiology, 2017, 8, 206.	1.3	3
36	5 Noninvasive Characterization of Myocardial Fiber Structure Using MRI. , 2017, , 179-246.		0

Noninvasive Characterization of Myocardial Fiber Structure Using MRI. , 2017, , 179-246.

#	Article	IF	CITATIONS
37	Sensitivity and Specificity of Cardiac Tissue Discrimination Using Fiber-Optics Confocal Microscopy. PLoS ONE, 2016, 11, e0147667.	1.1	7
38	Ginsenoside Rg3, a Gating Modifier of EAG Family K+ Channels. Molecular Pharmacology, 2016, 90, 469-482.	1.0	5
39	Diffusion tensor imaging and histology of developing hearts. NMR in Biomedicine, 2016, 29, 1338-1349.	1.6	11
40	Increased Susceptibility to Atrial Fibrillation Secondary to Atrial Fibrosis in Transgenic Goats Expressing Transforming Growth Factorâ€Î²1. Journal of Cardiovascular Electrophysiology, 2016, 27, 1220-1229.	0.8	40
41	Sheet-Like Remodeling of the T-System of Ventricular Cardiomyocytes in Heart Failure. Biophysical Journal, 2016, 110, 182a.	0.2	0
42	Measurement of Strain in Cardiac Myocytes at Micrometer Scale Based on Rapid Scanning Confocal Microscopy and Non-Rigid Image Registration. Annals of Biomedical Engineering, 2016, 44, 3020-3031.	1.3	3
43	Analyzing Remodeling of Cardiac Tissue: A Comprehensive Approach Based on Confocal Microscopy and 3D Reconstructions. Annals of Biomedical Engineering, 2016, 44, 1436-1448.	1.3	40
44	Analysis of Microstructure of the Cardiac Conduction System Based on Three-Dimensional Confocal Microscopy. PLoS ONE, 2016, 11, e0164093.	1.1	13
45	Stoichiometry of a hERG1 Agonist on Channel Gating. Biophysical Journal, 2015, 108, 121a.	0.2	Ο
46	Dyssynchronous Heart Failure is Associated with Spatially Heterogeneous Spark Density in Left Ventricular Cardiomyocytes. Biophysical Journal, 2015, 108, 261a.	0.2	0
47	Gain-of-function mutations in the calcium channel CACNA1C (Cav1.2) cause non-syndromic long-QT but not Timothy syndrome. Journal of Molecular and Cellular Cardiology, 2015, 80, 186-195.	0.9	80
48	Reply. Journal of the American College of Cardiology, 2015, 65, 2156-2157.	1.2	0
49	Cardiac Resynchronization Therapy Reduces Subcellular Heterogeneity of Ryanodine Receptors, T-Tubules, and Ca ²⁺ Sparks Produced by Dyssynchronous Heart Failure. Circulation: Heart Failure, 2015, 8, 1105-1114.	1.6	43
50	Structural Determinants and Biophysical Properties of hERG1 Channel Gating. , 2014, , 121-128.		0
51	Local delivery of fluorescent dye for fiber-optics confocal microscopy of the living heart. Frontiers in Physiology, 2014, 5, 367.	1.3	3
52	Characterization of diffuse fibrosis in the failing human heart via diffusion tensor imaging and quantitative histological validation. NMR in Biomedicine, 2014, 27, 1378-1386.	1.6	40
53	Stoichiometry of altered hERG1 channel gating by small molecule activators. Journal of General Physiology, 2014, 143, 499-512.	0.9	26
54	Myocardial Atrophy and Chronic Mechanical Unloading of the FailingÂHumanÂHeart. Journal of the American College of Cardiology, 2014, 64, 1602-1612.	1.2	83

#	Article	IF	CITATIONS
55	Remodeling of the sarcomeric cytoskeleton in cardiac ventricular myocytes during heart failure and after cardiac resynchronization therapy. Journal of Molecular and Cellular Cardiology, 2014, 72, 186-195.	0.9	34
56	A modified local control model for Ca2+ transients in cardiomyocytes: Junctional flux is accompanied by release from adjacent non-junctional RyRs. Journal of Molecular and Cellular Cardiology, 2014, 68, 1-11.	0.9	17
57	Localization and Role of Transient Receptor Potential Cation Channels in Rabbit Ventricular Myocytes. Biophysical Journal, 2014, 106, 754a-755a.	0.2	1
58	Abstract 62: The Coxsackie Virus B3 modulates Cardiac Ion Channels. Circulation Research, 2014, 115, .	2.0	0
59	Quantitative Analysis of Cardiac Tissue Including Fibroblasts Using Three-Dimensional Confocal Microscopy and Image Reconstruction: Towards a Basis for Electrophysiological Modeling. IEEE Transactions on Medical Imaging, 2013, 32, 862-872.	5.4	31
60	Coxsackievirus B3 modulates cardiac ion channels. FASEB Journal, 2013, 27, 4108-4121.	0.2	23
61	Modeling Calcium Dynamics in Rabbit Ventricular Myocytes with Several Realistic T-Tubules Subject to Detubulation. Biophysical Journal, 2013, 104, 107a.	0.2	0
62	Voltage sensitivity of M ₂ muscarinic receptors underlies the delayed rectifierâ€like activation of AChâ€gated K ⁺ current by choline in feline atrial myocytes. Journal of Physiology, 2013, 591, 4273-4286.	1.3	17
63	3-OST-7 Regulates BMP-Dependent Cardiac Contraction. PLoS Biology, 2013, 11, e1001727.	2.6	19
64	Identification of Nodal Tissue in the Living Heart Using Rapid Scanning Fiber-Optics Confocal Microscopy and Extracellular Fluorophores. Circulation: Cardiovascular Imaging, 2013, 6, 739-746.	1.3	19
65	Absence of glucose transporter 4 diminishes electrical activity of mouse hearts during hypoxia. Experimental Physiology, 2013, 98, 746-757.	0.9	10
66	A Semi-automatic Approach for Segmentation of Three-Dimensional Microscopic Image Stacks of Cardiac Tissue. Lecture Notes in Computer Science, 2013, , 300-307.	1.0	14
67	Subcellular Structures and Function of Myocytes Impaired During Heart Failure Are Restored by Cardiac Resynchronization Therapy. Circulation Research, 2012, 110, 588-597.	2.0	115
68	Modeling Effects of L-Type Ca2+ Current and Na+-Ca2+ Exchanger on Ca2+ Trigger Flux in Rabbit Myocytes with Realistic T-Tubule Geometries. Frontiers in Physiology, 2012, 3, 351.	1.3	28
69	Tuning of EAG K+ channel inactivation: Molecular determinants of amplification by mutations and a small molecule. Journal of General Physiology, 2012, 140, 307-324.	0.9	26
70	Electrical stimulation directs engineered cardiac tissue to an age-matched native phenotype. Journal of Tissue Engineering, 2012, 3, 204173141245535.	2.3	53
71	Geometric Changes of Transverse Tubules in Rabbit Cardiac Myocytes during Contraction. Biophysical Journal, 2012, 102, 356a.	0.2	0
72	Activation of Calcium Release from RyR Clusters Depends on their Distance from the Sarcolemma. Biophysical Journal, 2012, 102, 408a.	0.2	0

#	Article	IF	CITATIONS
73	Modeling Calcium Dynamics in Realistic Rabbit Ventricular Myocytes with Several Transverse Tubules. Biophysical Journal, 2012, 102, 102a.	0.2	Ο
74	Brownian Permeability Computation Model Predicts That Differences inÂthe Internal Radii of the Pore are Determinant for Unidirectional and Reversal Fluxes through Gap Junction Channels. Biophysical Journal, 2012, 102, 106a.	0.2	0
75	Mechanical modulation of the transverse tubular system of ventricular cardiomyocytes. Progress in Biophysics and Molecular Biology, 2012, 110, 218-225.	1.4	24
76	An automated approach to analyze microstructural remodeling from confocal microscopies of ventricular myocytes from diseased hearts. Biomedizinische Technik, 2012, 57, 46-49.	0.9	0
77	Contributions of Structural t-Tubule Heterogeneities and Membrane Ca2+ Flux Localization to Local Ca2+ Signaling in Rabbit Ventricular Myocytes. Biophysical Journal, 2011, 100, 557a.	0.2	Ο
78	Strain Transfer in Ventricular Cardiomyocytes to Their Transverse Tubular System Revealed by Scanning Confocal Microscopy. Biophysical Journal, 2011, 100, L53-L55.	0.2	24
79	Relaxation gating of the acetylcholineâ€activated inward rectifier K ⁺ current is mediated by intrinsic voltage sensitivity of the muscarinic receptor. Journal of Physiology, 2011, 589, 1755-1767.	1.3	29
80	Cardiac cell modelling: Observations from the heart of the cardiac physiome project. Progress in Biophysics and Molecular Biology, 2011, 104, 2-21.	1.4	139
81	Models of cardiac tissue electrophysiology: Progress, challenges and open questions. Progress in Biophysics and Molecular Biology, 2011, 104, 22-48.	1.4	483
82	Minimum Information about a Cardiac Electrophysiology Experiment (MICEE): Standardised reporting for model reproducibility, interoperability, and data sharing. Progress in Biophysics and Molecular Biology, 2011, 107, 4-10.	1.4	75
83	The Maximal Downstroke of Epicardial Potentials as an Index of Electrical Activity in Mouse Hearts. IEEE Transactions on Biomedical Engineering, 2011, 58, 3175-3183.	2.5	1
84	Three-Dimensional Modeling and Quantitative Analysis of Gap Junction Distributions in Cardiac Tissue. Annals of Biomedical Engineering, 2011, 39, 2683-2694.	1.3	17
85	Molecular Determinants for Activation of Human <i>Ether-Ã-go-go-related</i> Gene 1 Potassium Channels by 3-Nitro- <i>N</i> -(4-phenoxyphenyl) Benzamide. Molecular Pharmacology, 2011, 80, 630-637.	1.0	33
86	Verification of cardiac tissue electrophysiology simulators using an <i>N</i> -version benchmark. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 4331-4351.	1.6	253
87	Knock-Out of the Potassium Channel TASK-1 Leads to a Prolonged QT Interval and a Disturbed QRS Complex. Cellular Physiology and Biochemistry, 2011, 28, 77-86.	1.1	69
88	TASK-1 Channels May Modulate Action Potential Duration of Human Atrial Cardiomyocytes. Cellular Physiology and Biochemistry, 2011, 28, 613-624.	1.1	85
89	Molecular Determinants of Humanether-Ã-go-go-Related Gene 1 (hERG1) K+Channel Activation by NS1643. Molecular Pharmacology, 2011, 79, 1-9.	1.0	18
90	Modification of hERG1 channel gating by Cd2+. Journal of General Physiology, 2010, 136, 203-224.	0.9	24

#	Article	IF	CITATIONS
91	Molecular Basis for a High-Potency Open-Channel Block of Kv1.5 Channel by the Endocannabinoid Anandamide. Molecular Pharmacology, 2010, 77, 751-758.	1.0	16
92	Patient-Specific Modeling of Structure and Function of Cardiac Cells. , 2010, , 43-61.		0
93	PD-118057 contacts the pore helix of hERG1 channels to attenuate inactivation and enhance K ⁺ conductance. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20075-20080.	3.3	54
94	Modeling of cardiac ischemia in human myocytes and tissue including spatiotemporal electrophysiological variations / Modellierung kardialer Ischänie in menschlichen Myozyten und Gewebe. Biomedizinische Technik, 2009, 54, 107-125.	0.9	28
95	Chloroquine Blocks a Mutant Kir2.1 Channel Responsible for Short QT Syndrome and Normalizes Repolarization Properties <i>in silico</i> . Cellular Physiology and Biochemistry, 2009, 24, 153-160.	1.1	29
96	MODELLIERUNG DES MENSCHLICHEN HERZENS. Biomedizinische Technik, 2009, , 361-362.	0.9	0
97	Towards Modeling of Cardiac Micro-Structure With Catheter-Based Confocal Microscopy: A Novel Approach for Dye Delivery and Tissue Characterization. IEEE Transactions on Medical Imaging, 2009, 28, 1156-1164.	5.4	30
98	A Model of Electrical Conduction in Cardiac Tissue Including Fibroblasts. Annals of Biomedical Engineering, 2009, 37, 874-889.	1.3	77
99	Relationship between Maximal Upstroke Velocity of Transmembrane Voltage and Minimum Time Derivative of Extracellular Potential. Lecture Notes in Computer Science, 2009, , 505-512.	1.0	1
100	Confocal Microscopy and Image Processing Techniques for Online Monitoring of Engineered Tissue. , 2009, , .		0
101	Electrophysiological Modeling of Fibroblasts and their Interaction with Myocytes. Annals of Biomedical Engineering, 2008, 36, 41-56.	1.3	91
102	Structural determinants of Kv \hat{l}^2 1.3-induced channel inactivation: a hairpin modulated by PIP2. EMBO Journal, 2008, 27, 3164-3174.	3.5	39
103	Novel Features of the Rabbit Transverse Tubular System Revealed by Quantitative Analysis of Three-Dimensional Reconstructions from Confocal Images. Biophysical Journal, 2008, 95, 2053-2062.	0.2	86
104	Cooperative Interactions Between R531 and Acidic Residues in the Voltage Sensing Module of hERG1 Channels. Cellular Physiology and Biochemistry, 2008, 21, 037-046.	1.1	28
105	Structural Basis for <i>Ether-a-go-go</i> -Related Gene K ⁺ Channel Subtype-Dependent Activation by Niflumic Acid. Molecular Pharmacology, 2008, 73, 1159-1167.	1.0	18
106	The molecular basis of chloroquine block of the inward rectifier Kir2.1 channel. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1364-1368.	3.3	118
107	TOWARDS COMPUTATIONAL MODELING OF EXCITATION-CONTRACTION COUPLING IN CARDIAC MYOCYTES: RECONSTRUCTION OF STRUCTURES AND PROTEINS FROM CONFOCAL IMAGING. , 2008, , 328-39.		9
108	Sub-micrometer anatomical models of the sarcolemma of cardiac myocytes based on confocal imaging. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2008, , 390-401.	0.7	5

#	Article	IF	CITATIONS
109	Structural basis of action for a human ether-a-go-go-related gene 1 potassium channel activator. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13827-13832.	3.3	78
110	The acid-sensitive potassium channel TASK-1 in rat cardiac muscle. Cardiovascular Research, 2007, 75, 59-68.	1.8	138
111	A Framework for Modeling of Mechano-Electrical Feedback Mechanisms of Cardiac Myocytes and Tissues. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 160-3.	0.5	3
112	Modeling of IK1 mutations in human left ventricular myocytes and tissue. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H549-H559.	1.5	30
113	Stochastic Markovian modeling of electrophysiology of ion channels: Reconstruction of standard deviations in macroscopic currents. Journal of Theoretical Biology, 2007, 245, 627-637.	0.8	11
114	A Framework for Analyzing Confocal Images of Transversal Tubules in Cardiomyocytes. , 2007, , 110-119.		7
115	Heterogeneous three-dimensional anatomical and electrophysiological model of human atria. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364, 1465-1481.	1.6	229
116	Intramural activation and repolarization sequences in canine ventricles. Experimental and simulation studies. Journal of Electrocardiology, 2005, 38, 131-137.	0.4	40
117	Insights into Electrophysiological Studies with Papillary Muscle by Computational Models. Lecture Notes in Computer Science, 2005, , 216-225.	1.0	Ο
118	Sensitivity Analysis of Cardiac Electrophysiological Models Using Polynomial Chaos. , 2005, 2005, 4042-5.		4
119	De novo KCNQ1 mutation responsible for atrial fibrillation and short QT syndrome in utero. Cardiovascular Research, 2005, 68, 433-440.	1.8	280
120	Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8089-8096.	3.3	558
121	Modelling of short QT syndrome in a heterogeneous model of the human ventricular wall. Europace, 2005, 7, S105-S117.	0.7	38
122	Computational Cardiology. Lecture Notes in Computer Science, 2004, , .	1.0	98
123	Quantitative Reconstruction of Cardiac Electromechanics in Human Myocardium:. Journal of Cardiovascular Electrophysiology, 2003, 14, S219-S228.	0.8	35
124	MATHEMATICAL MODELING OF CARDIAC ELECTRO-MECHANICS: FROM PROTEIN TO ORGAN. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2003, 13, 3747-3755.	0.7	4
125	TOPOLOGISCH VERÃ, NDERBARE DREIDIMENSIONALE AKTIVE KONTUREN IN DER MEDIZINISCHEN BILDVERARBEITUNG. Biomedizinische Technik, 2000, 45, 509-510.	0.9	0
126	MODELLIERUNG DER KOPPLUNG VON ELEKTRISCHER ERREGUNG UND MECHANISCHER KONTRAKTION IM MYOKARDIUM. Biomedizinische Technik, 2000, 45, 513-514.	0.9	0

#	Article	IF	CITATIONS
127	REGISTRIERUNG MORPHOLOGISCHER UND ELEKTRISCHER MESSWERTE AM LANGENDORFF-PRÃ, "PARAT. Biomedizinische Technik, 2000, 45, 515-516.	0.9	2
128	Simulation der elektrischen Erregung im menschlichen Herzen auf vierdimensionalen tomographischen PatientendatensĤzen. Biomedizinische Technik, 2000, 45, 367-368.	0.9	0
129	HAPTISCHE INTERAKTION MIT OBERFLÄCHEN- UND VOLUMENBASIERTEN MODELLEN. Biomedizinische Technik, 2000, 45, 523-524.	0.9	1
130	Elastisches Matching multimodaler dreidimensionaler medizinischer DatensÃæe am Beispiel des Visible Female Datensatzes. Biomedizinische Technik, 2000, 45, 503-504.	0.9	0
131	PARAMETRISIERUNG ZELLULÃ, "RER AUTOMATEN DER ERREGUNGSAUSBREITUNG IM HERZEN AUSGEHEND VON ELEKTROPHYSIOLOGISCHEN ZELLMODELLEN. Biomedizinische Technik, 2000, 45, 481-482.	0.9	4
132	LINEARIZATION APPROACH FOR IMPEDANCE RECONSTRUCTION IN HUMAN BODY FROM SURFACE POTENTIALS MEASUREMENTS. Biomedizinische Technik, 2000, 45, 410-411.	0.9	3
133	DEFORMATION OF SURFACE NETS FOR INTERACTIVE SEGMENTATION OF TOMOGRAPHIC DATA. Biomedizinische Technik, 2000, 45, 483-484.	0.9	4
134	EIN MODELLBASIERTER ANSATZ ZUR LOKALISATION VON BASKET-KATHETERN FÜR ENDOKARDIALES MAPPING. Biomedizinische Technik, 2000, 45, 57-58.	0.9	1
135	Effects of Sarcolemmal Background Ca2+ Entry and Sarcoplasmic Ca2+ Leak Currents on Electrophysiology and Ca2+ Transients in Human Ventricular Cardiomyocytes: A Computational Comparison. Frontiers in Physiology, 0, 13, .	1.3	3