John D Chan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9568644/publications.pdf

Version: 2024-02-01

687363 677142 27 604 13 22 h-index citations g-index papers 31 31 31 612 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Schistosoma mansoni alter transcription of immunomodulatory gene products following in vivo praziquantel exposure. PLoS Neglected Tropical Diseases, 2021, 15, e0009200.	3.0	6
2	High-content approaches to anthelmintic drug screening. Trends in Parasitology, 2021, 37, 780-789.	3.3	14
3	Anti-schistosomal action of the calcium channel agonist FPL-64176. International Journal for Parasitology: Drugs and Drug Resistance, 2019, 11, 30-38.	3.4	4
4	Non-sedating benzodiazepines cause paralysis and tissue damage in the parasitic blood fluke Schistosoma mansoni. PLoS Neglected Tropical Diseases, 2019, 13, e0007826.	3.0	5
5	The anthelmintic drug praziquantel activates a schistosome transient receptor potential channel. Journal of Biological Chemistry, 2019, 294, 18873-18880.	3.4	81
6	Title is missing!. , 2019, 13, e0007826.		0
7	Title is missing!. , 2019, 13, e0007826.		O
8	Title is missing!. , 2019, 13, e0007826.		0
9	Title is missing!. , 2019, 13, e0007826.		O
10	Structure-activity profiling of alkaloid natural product pharmacophores against a Schistosoma serotonin receptor. International Journal for Parasitology: Drugs and Drug Resistance, 2018, 8, 550-558.	3.4	11
11	Unique pharmacological properties of serotoninergic G-protein coupled receptors from cestodes. PLoS Neglected Tropical Diseases, 2018, 12, e0006267.	3.0	24
12	Coalescing beneficial host and deleterious antiparasitic actions as an antischistosomal strategy. ELife, 2018, 7, .	6.0	12
13	The anthelmintic praziquantel is a human serotoninergic G-protein-coupled receptor ligand. Nature Communications, 2017, 8, 1910.	12.8	66
14	Utilizing the planarian voltage-gated ion channel transcriptome to resolve a role for a Ca 2+ channel in neuromuscular function and regeneration. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1036-1045.	4.1	17
15	Psychoactive Drugs as a Route to Development of Novel Antiâ€parasitic Agents. FASEB Journal, 2017, 31, .	0.5	O
16	A Miniaturized Screen of a Schistosoma mansoni Serotonergic G Protein-Coupled Receptor Identifies Novel Classes of Parasite-Selective Inhibitors. PLoS Pathogens, 2016, 12, e1005651.	4.7	30
17	Dataset for a Dugesia japonica de novo transcriptome assembly, utilized for defining the voltage-gated like ion channel superfamily. Data in Brief, 2016, 9, 1044-1047.	1.0	12
18	Pharmacological profiling an abundantly expressed schistosome serotonergic GPCR identifies nuciferine as a potent antagonist. International Journal for Parasitology: Drugs and Drug Resistance, 2016, 6, 364-370.	3.4	19

#	ARTICLE	IF	CITATIONS
19	Kinetic profiling an abundantly expressed planarian serotonergic GPCR identifies bromocriptine as a perdurant antagonist. International Journal for Parasitology: Drugs and Drug Resistance, 2016, 6, 356-363.	3.4	17
20	Ergot Alkaloids (Re)generate New Leads as Antiparasitics. PLoS Neglected Tropical Diseases, 2015, 9, e0004063.	3.0	20
21	Death and Axes': Unexpected Ca2+ Entry Phenologs Predict New Anti-schistosomal Agents. PLoS Pathogens, 2014, 10, e1003942.	4.7	38
22	Making Heads or Tails: Planarian Stem Cells in the Classroom. Journal of Microbiology and Biology Education, 2014, 15, 18-25.	1.0	4
23	Characterization of a flatworm inositol (1,4,5) trisphosphate receptor (IP3R) reveals a role in reproductive physiology. Cell Calcium, 2013, 53, 307-314.	2.4	1
24	Ca2+ channels and praziquantel: A view from the free world. Parasitology International, 2013, 62, 619-628.	1.3	55
25	Pharmacological and Functional Genetic Assays to Manipulate Regeneration of the Planarian & Lipschitz	0.3	15
26	Opposing Roles of Voltage-Gated Ca ²⁺ Channels in Neuronal Control of Regenerative Patterning. Journal of Neuroscience, 2011, 31, 15983-15995.	3.6	47
27	A Novel Biological Activity of Praziquantel Requiring Voltage-Operated Ca2+ Channel β Subunits: Subversion of Flatworm Regenerative Polarity. PLoS Neglected Tropical Diseases, 2009, 3, e464.	3.0	101