Manuel Alegre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9568189/publications.pdf

Version: 2024-02-01

117453 4,750 82 34 citations h-index papers

67 g-index 84 84 84 5465 docs citations times ranked citing authors all docs

98622

#	Article	IF	CITATIONS
1	Topography of Cortical Activation Differs for Fundamental and Harmonic Frequencies of the Steady-State Visual-Evoked Responses. An EEG and PET H215O Study. Cerebral Cortex, 2007, 17, 1899-1905.	1.6	608
2	Coupling between Beta and High-Frequency Activity in the Human Subthalamic Nucleus May Be a Pathophysiological Mechanism in Parkinson's Disease. Journal of Neuroscience, 2010, 30, 6667-6677.	1.7	348
3	Slow oscillatory activity and levodopa-induced dyskinesias in Parkinson's disease. Brain, 2006, 129, 1748-1757.	3.7	305
4	Independent Component Analysis as a Tool to Eliminate Artifacts in EEG: A Quantitative Study. Journal of Clinical Neurophysiology, 2003, 20, 249-257.	0.9	218
5	Involvement of the subthalamic nucleus in impulse control disorders associated with Parkinson's disease. Brain, 2011, 134, 36-49.	3.7	187
6	Movement-related changes in oscillatory activity in the human subthalamic nucleus: ipsilateral vs. contralateral movements. European Journal of Neuroscience, 2005, 22, 2315-2324.	1.2	159
7	Beta electroencephalograph changes during passive movements: sensory afferences contribute to beta event-related desynchronization in humans. Neuroscience Letters, 2002, 331, 29-32.	1.0	151
8	Parkinson's <scp>D</scp> isease, the <scp>S</scp> ubthalamic <scp>N</scp> ucleus, <scp>I</scp> nhibition, and <scp>I</scp> mpulsivity. Movement Disorders, 2015, 30, 128-140.	2.2	147
9	The subthalamic nucleus is involved in successful inhibition in the stop-signal task: A local field potential study in Parkinson's disease. Experimental Neurology, 2013, 239, 1-12.	2.0	143
10	Systemic messenger RNA as an etiological treatment for acute intermittent porphyria. Nature Medicine, 2018, 24, 1899-1909.	15.2	125
11	High beta activity in the subthalamic nucleus and freezing of gait in Parkinson's disease. Neurobiology of Disease, 2014, 64, 60-65.	2.1	113
12	Independent Component Analysis Removing Artifacts in Ictal Recordings. Epilepsia, 2004, 45, 1071-1078.	2.6	106
13	Memantine induces reversible neurologic impairment in patients with MS. Neurology, 2009, 72, 1630-1633.	1.5	101
14	Changes in subthalamic activity during movement observation in Parkinson's disease: Is the mirror system mirrored in the basal ganglia?. Clinical Neurophysiology, 2010, 121, 414-425.	0.7	100
15	Successful thalamic deep brain stimulation for orthostatic tremor. Movement Disorders, 2008, 23, 1808-1811.	2.2	94
16	Movement-related changes in cortical oscillatory activity in ballistic, sustained and negative movements. Experimental Brain Research, 2003, 148, 17-25.	0.7	89
17	Frontal and central oscillatory changes related to different aspects of the motor process: a study in go/no-go paradigms. Experimental Brain Research, 2004, 159, 14-22.	0.7	88
18	Gamma band activity in an auditory oddball paradigm studied with the wavelet transform. Clinical Neurophysiology, 2001, 112, 1219-1228.	0.7	84

#	Article	IF	Citations
19	Potentials evoked by chirp-modulated tones: a new technique to evaluate oscillatory activity in the auditory pathway. Clinical Neurophysiology, 2004, 115, 699-709.	0.7	83
20	Alpha and beta oscillatory changes during stimulus-induced movement paradigms: effect of stimulus predictability. NeuroReport, 2003, 14, 381-385.	0.6	80
21	Changes in the Heart Rate Variability in Patients with Obstructive Sleep Apnea and Its Response to Acute CPAP Treatment. PLoS ONE, 2012, 7, e33769.	1.1	79
22	Ketamine-Induced Oscillations in the Motor Circuit of the Rat Basal Ganglia. PLoS ONE, 2011, 6, e21814.	1.1	65
23	Lateâ€onset periodic asystolia during vagus nerve stimulation. Epilepsia, 2009, 50, 928-932.	2.6	63
24	Oscillatory changes related to the forced termination of a movement. Clinical Neurophysiology, 2008, 119, 290-300.	0.7	61
25	Gamma band responses to target and non-target auditory stimuli in humans. Neuroscience Letters, 2004, 367, 6-9.	1.0	55
26	Sustained Enzymatic Correction by rAAV-Mediated Liver Gene Therapy Protects Against Induced Motor Neuropathy in Acute Porphyria Mice. Molecular Therapy, 2011, 19, 243-250.	3.7	55
27	Beta activity in the subthalamic nucleus during sleep in patients with Parkinson's disease. Movement Disorders, 2009, 24, 254-260.	2.2	54
28	Alpha and beta oscillatory activity during a sequence of two movements. Clinical Neurophysiology, 2004, 115, 124-130.	0.7	53
29	Alpha and beta changes in cortical oscillatory activity in a go/no go randomly-delayed-response choice reaction time paradigm. Clinical Neurophysiology, 2006, 117, 16-25.	0.7	49
30	Subthalamic activity during diphasic dyskinesias in Parkinson's disease. Movement Disorders, 2012, 27, 1178-1181.	2.2	48
31	Delta-mediated cross-frequency coupling organizes oscillatory activity across the rat cortico-basal ganglia network. Frontiers in Neural Circuits, 2013, 7, 155.	1.4	45
32	Stimulation sites in the subthalamic nucleus and clinical improvement in Parkinson's disease: a new approach for active contact localization. Journal of Neurosurgery, 2016, 125, 1068-1079.	0.9	41
33	Unilateral periodic limb movements during sleep in corticobasal degeneration. Movement Disorders, 2001, 16, 1180-1183.	2.2	40
34	Hardware complications in deep brain stimulation: Electrode impedance and loss of clinical benefit. Parkinsonism and Related Disorders, 2012, 18, 765-769.	1.1	39
35	Increased Sympathetic and Decreased Parasympathetic Cardiac Tone in Patients with Sleep Related Alveolar Hypoventilation. Sleep, 2013, 36, 933-940.	0.6	39
36	Coupling in the cortico-basal ganglia circuit is aberrant in the ketamine model of schizophrenia. European Neuropsychopharmacology, 2015, 25, 1375-1387.	0.3	38

#	Article	IF	Citations
37	Effect of Dexmedetomidine and Propofol on Basal Ganglia Activity in Parkinson Disease. Anesthesiology, 2017, 126, 1033-1042.	1.3	33
38	Abnormalities in brain synchronization are correlated with cognitive impairment in multiple sclerosis. Multiple Sclerosis Journal, 2009, 15, 509-516.	1.4	30
39	Long-term continuous positive airway pressure therapy improves cardiac autonomic tone during sleep in patients with obstructive sleep apnea. Clinical Autonomic Research, 2015, 25, 225-232.	1.4	30
40	Characterizing the phenotypes of obstructive sleep apnea: Clinical, sleep, and autonomic features of obstructive sleep apnea with and without hypoxia. Clinical Neurophysiology, 2014, 125, 1783-1791.	0.7	29
41	Chirp-evoked potentials in the awake and anesthetized rat. A procedure to assess changes in cortical oscillatory activity. Experimental Neurology, 2008, 210, 144-153.	2.0	26
42	Cardiac autonomic impairment during sleep is linked with disease severity in Parkinson's disease. Clinical Neurophysiology, 2013, 124, 1163-1168.	0.7	26
43	Oscillatory activity in the basal ganglia and deep brain stimulation. Movement Disorders, 2017, 32, 64-69.	2.2	25
44	Atypical antipsychotics normalize low-gamma evoked oscillations in patients with schizophrenia. Psychiatry Research, 2017, 247, 214-221.	1.7	24
45	The mirror system, theory of mind and Parkinson's disease. Journal of the Neurological Sciences, 2011, 310, 194-196.	0.3	23
46	Sleep Structure in Patients With Periodic Limb Movements and Obstructive Sleep Apnea Syndrome. Journal of Clinical Neurophysiology, 2009, 26, 267-271.	0.9	22
47	High frequency oscillations in the somatosensory evoked potentials (SSEP's) are mainly due to phase-resetting phenomena. Journal of Neuroscience Methods, 2006, 154, 142-148.	1.3	20
48	Independent Component Analysis in the Study of Focal Seizures. Journal of Clinical Neurophysiology, 2006, 23, 551-558.	0.9	19
49	Sound analysis of catathrenia: a vocal expiratory sound. Sleep and Breathing, 2011, 15, 229-235.	0.9	19
50	High-Frequency Oscillations in the Somatosensory Evoked Potentials of Patients With Cortical Myoclonus: Pathophysiologic Implications. Journal of Clinical Neurophysiology, 2006, 23, 265-272.	0.9	18
51	Independent Component Analysis Separates Spikes of Different Origin in the EEG. Journal of Clinical Neurophysiology, 2006, 23, 72-78.	0.9	17
52	Effect of Reduced Attention on Auditory Amplitude-Modulation Following Responses: A Study With Chirp-Evoked Potentials. Journal of Clinical Neurophysiology, 2008, 25, 42-47.	0.9	17
53	Catathrenia: respiratory disorder or parasomnia?. Sleep Medicine, 2015, 16, 827-830.	0.8	17
54	Basal cardiac autonomic tone is normal in patients with periodic leg movements during sleep. Journal of Neural Transmission, 2014, 121, 385-390.	1.4	16

#	Article	IF	Citations
55	An Inducible Promoter Responsive to Different Porphyrinogenic Stimuli Improves Gene Therapy Vectors for Acute Intermittent Porphyria. Human Gene Therapy, 2018, 29, 480-491.	1.4	14
56	Brainstem auditory evoked potentials (BAEPs) in the cynomolgus macaque monkey. Hearing Research, 2001, 151, 115-120.	0.9	13
57	Influence of filters in the detrended fluctuation analysis of digital electroencephalographic data. Journal of Neuroscience Methods, 2008, 170, 310-316.	1.3	13
58	Oscillatory activity in the human basal ganglia: More than just beta, more than just Parkinson's disease. Experimental Neurology, 2013, 248, 183-186.	2.0	12
59	Cortical gamma activity during auditory tone omission provides evidence for the involvement of oscillatory activity in top-down processing. Experimental Brain Research, 2006, 175, 463-470.	0.7	11
60	Technical flaws in multiple-choice questions in the access exam to medical specialties ("examen MIRâ€) in Spain (2009–2013). BMC Medical Education, 2016, 16, 47.	1.0	9
61	Abnormal brain gamma oscillations in response to auditory stimulation in Dravet syndrome. European Journal of Paediatric Neurology, 2020, 24, 134-141.	0.7	9
62	Effects of dexmedetomidine on subthalamic local field potentials in Parkinson's disease. British Journal of Anaesthesia, 2021, 127, 245-253.	1.5	9
63	Recombinant porphobilinogen deaminase targeted to the liver corrects enzymopenia in a mouse model of acute intermittent porphyria. Science Translational Medicine, 2022, 14, eabc0700.	5.8	9
64	AGRYPNIA EXCITATA IN FATAL FAMILIAL INSOMNIA. A VIDEO-POLYGRAPHIC STUDY. Neurology, 2007, 69, 607-608.	1.5	7
65	Dopaminergic modulation of the spectral characteristics in the rat brain oscillatory activity. Chaos, Solitons and Fractals, 2012, 45, 619-628.	2.5	7
66	Theta-phase closed-loop stimulation induces motor paradoxical responses in the rat model of Parkinson disease. Brain Stimulation, 2018, 11, 231-238.	0.7	7
67	mRNA-based therapy in a rabbit model of variegate porphyria offers new insights into the pathogenesis of acute attacks. Molecular Therapy - Nucleic Acids, 2021, 25, 207-219.	2.3	7
68	Oscillatory Cortical Changes During Periodic Limb Movements. Sleep, 2004, 27, 1493-1498.	0.6	6
69	Imitating versus non-imitating movements: Differences in frontal electroencephalographic oscillatory activity. Neuroscience Letters, 2006, 398, 201-205.	1.0	6
70	Cortical oscillations scan using chirp-evoked potentials in 6-hydroxydopamine rat model of Parkinson's disease. Brain Research, 2010, 1310, 58-67.	1.1	6
71	Factors Associated with Tremor Changes during Sedation with Dexmedetomidine in Parkinson's Disease Surgery. Stereotactic and Functional Neurosurgery, 2015, 93, 393-399.	0.8	6
72	Subthalamic role on the generation of spikes in temporal epilepsy. Epilepsy Research, 2009, 83, 257-260.	0.8	5

#	Article	IF	CITATIONS
73	Technical advances in deep brain stimulation: How far is enough?. Movement Disorders, 2012, 27, 341-342.	2.2	5
74	Pharyngo-laryngoscopic video-recording in obstructive sleep apnea during natural N2 sleep. A case report of a non-complete obstructive mechanism. Sleep Medicine, 2013, 14, 217-219.	0.8	5
75	Cardiac autonomic impairment during sleep as a marker of human prion diseases: A preliminary report. Clinical Neurophysiology, 2014, 125, 208-210.	0.7	4
76	Brain oscillations and Parkinson disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2022, 184, 259-271.	1.0	4
77	Sedation During Surgery for Movement Disorders and Perioperative Neurologic Complications: An Observational Study Comparing Local Anesthesia, Remifentanil, and Dexmedetomidine. World Neurosurgery, 2017, 101, 114-121.	0.7	3
78	Brain ventricular enlargement in human and murine acute intermittent porphyria. Human Molecular Genetics, 2020, 29, 3211-3223.	1.4	3
79	Neonatal automated seizure detection: Going ahead into clinical use. Clinical Neurophysiology, 2011, 122, 1480-1481.	0.7	1
80	Simple and Autonomous Sleep Signal Processing System for the Detection of Obstructive Sleep Apneas. International Journal of Environmental Research and Public Health, 2022, 19, 6934.	1.2	1
81	Validity evidence of SIMUL â€Eye: eye movement and pupillary reflex simulator. Acta Ophthalmologica, 2020, 98, e397-e399.	0.6	0
82	Static magnetic stimulation of human auditory cortex: a feasibility study. NeuroReport, 2022, 33, 487-494.	0.6	0