Jennifer A Noble

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9568109/publications.pdf

Version: 2024-02-01

53	1,115	18	414414
papers	citations	h-index	g-index
56	56	56	1232
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Ultraviolet and vacuum ultraviolet photo-processing of protonated benzonitrile (C ₆ H ₅ CNH ⁺). Astronomy and Astrophysics, 2022, 657, A85.	5.1	8
2	IRFEL Selective Irradiation of Amorphous Solid Water: from Dangling to Bulk Modes. Journal of Physical Chemistry A, 2022, 126, 2262-2269.	2.5	4
3	Infrared free-electron laser irradiation of carbon dioxide ice. Journal of Molecular Spectroscopy, 2022, 385, 111601.	1.2	6
4	Water Clusters in Interaction with Corannulene in a Rare Gas Matrix: Structures, Stability and IR Spectra. Photochem, 2022, 2, 237-262.	2.2	4
5	Pre-Dewar structure modulates protonated azaindole photodynamics. Physical Chemistry Chemical Physics, 2022, 24, 12346-12353.	2.8	4
6	Photofragmentation and electron detachment of aromatic phosphonate, sulfonate and phosphate oxyanions. European Physical Journal D, 2021, 75, 1.	1.3	6
7	Roadmap on dynamics of molecules and clusters in the gas phase. European Physical Journal D, 2021, 75, 1.	1.3	32
8	Loss of CO2 from Monodeprotonated Phthalic Acid upon Photodissociation and Dissociative Electron Detachment. Journal of Physical Chemistry A, 2021, 125, 7406-7413.	2.5	2
9	Ice Nucleation Activities of Carbon-Bearing Materials in Deposition Mode: From Graphite to Airplane Soot Surrogates. Journal of Physical Chemistry C, 2020, 124, 489-503.	3.1	10
10	Influence of the N atom position on the excited state photodynamics of protonated azaindole. Physical Chemistry Chemical Physics, 2020, 22, 27280-27289.	2.8	7
11	Infrared Resonant Vibrationally Induced Restructuring of Amorphous Solid Water. Journal of Physical Chemistry C, 2020, 124, 20864-20873.	3.1	12
12	Photoinduced water oxidation in pyrimidine–water clusters: a combined experimental and theoretical study. Physical Chemistry Chemical Physics, 2020, 22, 12502-12514.	2.8	16
13	Chemical discrimination of the particulate and gas phases of miniCAST exhausts using a two-filter collection method. Atmospheric Measurement Techniques, 2020, 13, 951-967.	3.1	7
14	Perturbation of the Surface of Amorphous Solid Water by the Adsorption of Polycyclic Aromatic Hydrocarbons. Journal of Physical Chemistry C, 2020, 124, 2994-3001.	3.1	14
15	Influence of the N atom and its position on electron photodetachment of deprotonated indole and azaindole. Physical Chemistry Chemical Physics, 2020, 22, 27290-27299.	2.8	5
16	Influence of ice structure on the soft UV photochemistry of PAHs embedded in solid water. Astronomy and Astrophysics, 2020, 644, A22.	5.1	14
17	Excited States Processes in Protonated Molecules Studied by Frequency-Domain Spectroscopy. , 2019, , 337-365.		0
18	On the benefits of using multivariate analysis in mass spectrometric studies of combustion-generated aerosols. Faraday Discussions, 2019, 218, 115-137.	3.2	13

#	Article	IF	CITATIONS
19	Spectroscopic Measurements of Methane Solid–Gas Equilibrium Clapeyron Curve between 40 and 77 K. Journal of Physical Chemistry A, 2019, 123, 3518-3534.	2.5	1
20	Ultrafast electronic relaxations from the S ₃ state of pyrene. Physical Chemistry Chemical Physics, 2019, 21, 14111-14125.	2.8	8
21	Photodetachment of deprotonated aromatic amino acids: stability of the dehydrogenated radical depends on the deprotonation site. Physical Chemistry Chemical Physics, 2019, 21, 23346-23354.	2.8	9
22	Theoretical determination of adsorption and ionisation energies of polycyclic aromatic hydrocarbons on water ice. Physical Chemistry Chemical Physics, 2018, 20, 11941-11953.	2.8	24
23	Tautomerism and electronic spectroscopy of protonated 1- and 2-aminonaphthalene. Physical Chemistry Chemical Physics, 2018, 20, 6134-6145.	2.8	11
24	Photochemistry of Fe:H ₂ O Adducts in Argon Matrixes: A Combined Experimental and Theoretical Study in the Mid-IR and UV–Visible Regions. Journal of Physical Chemistry A, 2018, 122, 529-542.	2.5	3
25	Adsorption of PAHs on interstellar ice viewed by classical molecular dynamics. Physical Chemistry Chemical Physics, 2018, 20, 8753-8764.	2.8	21
26	Thermal Reactivity Dynamics in Interstellar Ice. Astrophysics and Space Science Library, 2018, , 149-155.	2.7	0
27	Reactivity in interstellar ice analogs: role of the structural evolution. Astronomy and Astrophysics, 2018, 614, A107.	5.1	19
28	Electronic Spectroscopy of Protonated 1â€Aminopyrene in a Cold Ion Trap. Chemistry - an Asian Journal, 2017, 12, 1523-1531.	3.3	9
29	Formation of coronene:water complexes: FTIR study in argon matrices and theoretical characterisation. Physical Chemistry Chemical Physics, 2017, 19, 8516-8529.	2.8	17
30	Efficient photochemistry of coronene:water complexes. Astronomy and Astrophysics, 2017, 599, A124.	5.1	21
31	Two-dimensional ice mapping of molecular cores. Monthly Notices of the Royal Astronomical Society, 2017, 467, 4753-4762.	4.4	10
32	The electronic spectra of protonated nitrogen-substituted polycyclic aromatic hydrocarbon molecules. Astronomy and Astrophysics, 2015, 577, A79.	5.1	15
33	Hydrogenation at low temperatures does not always lead to saturation: the case of HNCO. Astronomy and Astrophysics, 2015, 576, A91.	5.1	58
34	Infrared Photoisomerization of 1-Propanol CD ₃ and OD Trapped in Four Cryogenic Matrices: Ne, N ₂ , Ar, and Xe. Journal of Physical Chemistry A, 2015, 119, 1137-1145.	2.5	4
35	Inhomogeneity of the amorphous solid water dangling bonds. Physical Chemistry Chemical Physics, 2015, 17, 9429-9435.	2.8	7
36	Diffusion of molecules in the bulk of a low density amorphous ice from molecular dynamics simulations. Physical Chemistry Chemical Physics, 2015, 17, 11455-11468.	2.8	48

#	Article	IF	CITATIONS
37	Segregation of O ₂ and CO on the surface of dust grains determines the desorption energy of O ₂ . Monthly Notices of the Royal Astronomical Society, 2015, 454, 2636-2646.	4.4	11
38	Kinetics of the NH ₃ and CO ₂ solid-state reaction at low temperature. Physical Chemistry Chemical Physics, 2014, 16, 23604-23615.	2.8	27
39	Unveiling the Surface Structure of Amorphous Solid Water via Selective Infrared Irradiation of OH Stretching Modes. Journal of Physical Chemistry Letters, 2014, 5, 826-829.	4.6	20
40	IR Selective Irradiations of Amorphous Solid Water Dangling Modes: Irradiation vs Annealing Effects. Journal of Physical Chemistry C, 2014, 118, 20488-20495.	3.1	15
41	The thermal reactivity of HCN and NH3 in interstellar ice analogues. Monthly Notices of the Royal Astronomical Society, 2013, 428, 3262-3273.	4.4	48
42	A SURVEY OF H ₂ 0, CO ₂ , AND CO ICE FEATURES TOWARD BACKGROUND STARS AND LOW-MASS YOUNG STELLAR OBJECTS USING <i>AKARI</i> Astrophysical Journal, 2013, 775, 85.	4.5	37
43	How micron-sized dust particles determine the chemistry of our Universe. Scientific Reports, 2013, 3, 1338.	3.3	132
44	Diffusion measurements of CO, HNCO, H ₂ CO, and NH ₃ in amorphous water ice. Astronomy and Astrophysics, 2013, 555, A13.	5.1	68
45	Water formation through O2 + D pathway on cold silicate and amorphous water ice surfaces of interstellar interest. Journal of Chemical Physics, 2012, 137, 234706.	3.0	27
46	The formation of carbon dioxide in molecular cores by a non-energetic route. EAS Publications Series, 2012, 58, 353-356.	0.3	0
47	Supplementary information on the near-infrared spectroscopic data of the infrared camera (IRC) onboard AKARI. Proceedings of SPIE, 2012, , .	0.8	4
48	The desorption of H ₂ CO from interstellar grains analogues. Astronomy and Astrophysics, 2012, 543, A5.	5.1	72
49	AKARI observations of ice absorption bands towards edge-on young stellar objects. Astronomy and Astrophysics, 2012, 538, A57.	5.1	59
50	Thermal desorption characteristics of CO, O2 and CO2 on non-porous water, crystalline water and silicate surfaces at submonolayer and multilayer coverages. Monthly Notices of the Royal Astronomical Society, 2012, , no-no.	4.4	63
51	CO ₂ FORMATION IN QUIESCENT CLOUDS: AN EXPERIMENTAL STUDY OF THE CO + OH PATHWAY. Astrophysical Journal, 2011, 735, 121.	4.5	77
52	2D mapping of ice species in molecular cores. Proceedings of the International Astronomical Union, 2009, 5, 730-730.	0.0	0
53	Model Guided Application for Investigating Particle Number (PN) Emissions in GDI Spark Ignition Engines. SAE International Journal of Advances and Current Practices in Mobility, $0,1,76$ -88.	2.0	5