
Antonio Chica

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9567887/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catalytic oxidative desulfurization (ODS) of diesel fuel on a continuous fixed-bed reactor. Journal of Catalysis, 2006, 242, 299-308.	3.1	272
2	Hydroisomerization of Pentane, Hexane, and Heptane for Improving the Octane Number of Gasoline. Journal of Catalysis, 1999, 187, 167-176.	3.1	254
3	Changing the Si distribution in SAPO-11 by synthesis with surfactants improves the hydroisomerization/dewaxing properties. Journal of Catalysis, 2006, 242, 153-161.	3.1	141
4	Determination of the Pore Topology of Zeolite IM-5 by Means of Catalytic Test Reactions and Hydrocarbon Adsorption Measurements. Journal of Catalysis, 2000, 189, 382-394.	3.1	79
5	On the Mechanism of Alkane Isomerisation (Isodewaxing) with Unidirectional 10-Member Ring Zeolites. A Molecular Dynamics and Catalytic Study. Journal of Catalysis, 2000, 195, 227-236.	3.1	77
6	Optimization of non-catalytic transesterification of tobacco (Nicotiana tabacum) seed oil using supercritical methanol to biodiesel production. Energy Conversion and Management, 2017, 131, 99-108.	4.4	70
7	Selective Catalytic Oxidation of Organosulfur Compounds withtert-Butyl Hydroperoxide. Chemistry - A European Journal, 2006, 12, 1960-1967.	1.7	69
8	Adsorption, Desorption, and Conversion of Thiophene on H-ZSM5. Langmuir, 2004, 20, 10982-10991.	1.6	68
9	Discovery of new paraffin isomerization catalysts based on SO42â~'/ZrO2 and WOx/ZrO2 applying combinatorial techniques. Catalysis Today, 2003, 81, 495-506.	2.2	66
10	State of charge monitoring of vanadium redox flow batteries using half cell potentials and electrolyte density. Journal of Power Sources, 2018, 378, 776-783.	4.0	65
11	Can artificial neural networks help the experimentation in catalysis?. Catalysis Today, 2003, 81, 393-403.	2.2	61
12	Development of a low temperature light paraffin isomerization catalysts with improved resistance to water and sulphur by combinatorial methods. Applied Catalysis A: General, 2003, 239, 35-42.	2.2	59
13	Effective and stable bioethanol steam reforming catalyst based on Ni and Co supported on all-silica delaminated ITQ-2 zeolite. Catalysis Today, 2009, 146, 37-43.	2.2	57
14	Mesopore-modified mordenites as catalysts for catalytic pyrolysis of biomass and cracking of vacuum gasoil processes. Green Chemistry, 2013, 15, 1647.	4.6	56
15	Effects of zeolite structure and aluminum content on thiophene adsorption, desorption, and surface reactions. Applied Catalysis B: Environmental, 2005, 60, 223-232.	10.8	55
16	Isomerization of C5–C7 n-alkanes on unidirectional large pore zeolites: activity, selectivity and adsorption features. Catalysis Today, 2001, 65, 101-110.	2.2	53
17	Co/ZnO and Ni/ZnO catalysts for hydrogen production by bioethanol steam reforming. Influence of ZnO support morphology on the catalytic properties of Co and Ni active phases. International Journal of Hydrogen Energy, 2010, 35, 6709-6716.	3.8	53
18	Ni-sepiolite and Ni-todorokite as efficient CO2 methanation catalysts: Mechanistic insight by operando DRIFTS. Applied Catalysis B: Environmental, 2020, 264, 118546.	10.8	52

ΑΝΤΟΝΙΟ CHICA

#	Article	IF	CITATIONS
19	Natural sepiolite promoted with Ni as new and efficient catalyst for the sustainable production of hydrogen by steam reforming of the biodiesel by-products glycerol. Fuel, 2017, 193, 351-358.	3.4	42
20	Zeolites: Promised Materials for the Sustainable Production of Hydrogen. ISRN Chemical Engineering, 2013, 2013, 1-19.	1.2	40
21	Bioethanol steam reforming on Co/ITQ-18 catalyst: Effect of the crystalline structure of the delaminated zeolite ITQ-18. International Journal of Hydrogen Energy, 2011, 36, 3862-3869.	3.8	39
22	Changing the hydroisomerization to hydrocracking ratio of long chain alkanes by varying the level of delamination in zeolitic (ITQ-6) materials. Catalysis Today, 2009, 147, 179-185.	2.2	36
23	Performance of a vanadium redox flow battery with tubular cell design. Journal of Power Sources, 2017, 355, 199-205.	4.0	32
24	Molecular Dynamics of C7 Hydrocarbon Diffusion in ITQ-2. The Benefit of Zeolite Structures Containing Accessible Pockets. Journal of Physical Chemistry B, 2000, 104, 416-422.	1.2	30
25	YSZ monoliths promoted with Co as catalysts for the production of H 2 by steam reforming of ethanol. Applied Catalysis A: General, 2017, 538, 165-173.	2.2	30
26	Bioethanol steam reforming on Ni-based modified mordenite. Effect of mesoporosity, acid sites and alkaline metals. International Journal of Hydrogen Energy, 2012, 37, 7101-7108.	3.8	28
27	Co and La supported on Zn-Hydrotalcite-derived material as efficient catalyst for ethanol steam reforming. International Journal of Hydrogen Energy, 2019, 44, 12685-12692.	3.8	26
28	Furfural steam reforming over Ni-based catalysts. Influence of Ni incorporation method. International Journal of Hydrogen Energy, 2014, 39, 5234-5241.	3.8	25
29	Biogas dry reforming over Ni–Ce catalyst supported on nanofibered alumina. International Journal of Hydrogen Energy, 2020, 45, 20568-20581.	3.8	22
30	New Catalysts based on Ni-Birnessite and Ni-Todorokite for the Efficient Production of Hydrogen by Bioethanol Steam Reforming. Energy Procedia, 2012, 29, 181-191.	1.8	17
31	Catalysts based on Co-Birnessite and Co-Todorokite for the efficient production ofÂhydrogen by ethanol steam reforming. International Journal of Hydrogen Energy, 2018, 43, 16859-16865.	3.8	17
32	Zeolite-Supported Ni Catalysts for CO2 Methanation: Effect of Zeolite Structure and Si/Al Ratio. Applied Sciences (Switzerland), 2020, 10, 5131.	1.3	17
33	Environmental implications of biohydrogen based energy production from steam reforming of alcoholic waste. Industrial Crops and Products, 2019, 138, 111465.	2.5	16
34	Application Of Genetic Algorithms To The Development And Optimisation Of Light Paraffin Isomerisation Catalysts. , 2002, , 153-172.		13
35	Toluene steam reforming over nickel based catalysts. International Journal of Hydrogen Energy, 2021, 46, 17472-17480.	3.8	12
36	Lignocellulosic waste-derived basic solids and their catalytic applications for the transformation of biomass waste. Catalysis Today, 2015, 257, 229-236.	2.2	11

ΑΝΤΟΝΙΟ CHICA

#	Article	IF	CITATIONS
37	Valorization of alcoholic wastes from the vinery industry to produce H2. International Journal of Hydrogen Energy, 2019, 44, 9763-9770.	3.8	9
38	Intensification of catalytic CO2 methanation mediated by in-situ water removal through a high-temperature polymeric thin-film composite membrane. Journal of CO2 Utilization, 2022, 55, 101813.	3.3	8
39	Sustainable Production of Hydrogen by Steam Reforming of Ethanol Using Cobalt Supported on Nanoporous Zeolitic Material. Nanomaterials, 2020, 10, 1934.	1.9	7
40	Sustainable production of hydrogen via steam reforming of furfural (SRF) with Co-catalyst supported on sepiolite. International Journal of Hydrogen Energy, 2021, 46, 17481-17489.	3.8	6
41	Tubular membrane electrode assembly for PEM electrolysis. International Journal of Hydrogen Energy, 2022, 47, 15943-15951.	3.8	6