
David S Bredt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9567742/publications.pdf Version: 2024-02-01

DAVID S RDEDT

#	Article	IF	CITATIONS
1	Nicotinic acetylcholine receptor redux: Discovery of accessories opens therapeutic vistas. Science, 2021, 373, .	6.0	36
2	Targeting receptor complexes: a new dimension in drug discovery. Nature Reviews Drug Discovery, 2020, 19, 884-901.	21.5	42
3	NACHO Engages N-Clycosylation ER Chaperone Pathways for α7 Nicotinic Receptor Assembly. Cell Reports, 2020, 32, 108025.	2.9	12
4	Hair cell α9α10 nicotinic acetylcholine receptor functional expression regulated by ligand binding and deafness gene products. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24534-24544.	3.3	17
5	Polyamine regulation of ion channel assembly and implications for nicotinic acetylcholine receptor pharmacology. Nature Communications, 2020, 11, 2799.	5.8	19
6	Functional α6β4 acetylcholine receptor expression enables pharmacological testing of nicotinic agonists with analgesic properties. Journal of Clinical Investigation, 2020, 130, 6158-6170.	3.9	9
7	α6-Containing Nicotinic Acetylcholine Receptor Reconstitution Involves Mechanistically Distinct Accessory Components. Cell Reports, 2019, 26, 866-874.e3.	2.9	22
8	α7 nicotinic acetylcholine receptor upregulation by anti-apoptotic Bcl-2 proteins. Nature Communications, 2019, 10, 2746.	5.8	24
9	Modulation of TARP γ8–Containing AMPA Receptors as a Novel Therapeutic Approach for Chronic Pain. Journal of Pharmacology and Experimental Therapeutics, 2019, 369, 345-363.	1.3	15
10	NACHO Mediates Nicotinic Acetylcholine Receptor Function throughout the Brain. Cell Reports, 2017, 19, 688-696.	2.9	65
11	Getting a Handle on Neuropharmacology by Targeting Receptor-Associated Proteins. Neuron, 2017, 96, 989-1001.	3.8	56
12	A Genome-Wide Arrayed cDNA Screen to Identify Functional Modulators of α7 Nicotinic Acetylcholine Receptors. SLAS Discovery, 2017, 22, 155-165.	1.4	11
13	Discovery of the First α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptor Antagonist Dependent upon Transmembrane AMPA Receptor Regulatory Protein (TARP) γ-8. Journal of Medicinal Chemistry, 2016, 59, 4753-4768.	2.9	48
14	Forebrain-selective AMPA-receptor antagonism guided by TARP Î ³ -8 as an antiepileptic mechanism. Nature Medicine, 2016, 22, 1496-1501.	15.2	77
15	Brain α7 Nicotinic Acetylcholine Receptor Assembly Requires NACHO. Neuron, 2016, 89, 948-955.	3.8	127
16	Porcupine Controls Hippocampal AMPAR Levels, Composition, and Synaptic Transmission. Cell Reports, 2016, 14, 782-794.	2.9	48
17	Translating depression biomarkers for improved targeted therapies. Neuroscience and Biobehavioral Reviews, 2015, 59, 1-15.	2.9	19
18	AMPA receptor modulation by cornichonâ€2 dictated by transmembrane AMPA receptor regulatory protein isoform. European Journal of Neuroscience, 2012, 35, 182-194.	1.2	32

DAVID S BREDT

#	Article	IF	CITATIONS
19	PDZ binding of TARPÎ ³ -8 controls synaptic transmission but not synaptic plasticity. Nature Neuroscience, 2011, 14, 1410-1412.	7.1	59
20	Cornichon-2 Modulates AMPA Receptor–Transmembrane AMPA Receptor Regulatory Protein Assembly to Dictate Gating and Pharmacology. Journal of Neuroscience, 2011, 31, 6928-6938.	1.7	66
21	Hippocampal AMPA Receptor Gating Controlled byÂBoth TARP and Cornichon Proteins. Neuron, 2010, 68, 1082-1096.	3.8	164
22	AMPA receptors and stargazin-like transmembrane AMPA receptor-regulatory proteins mediate hippocampal kainate neurotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18784-18788.	3.3	47
23	TARP Subtypes Differentially and Dose-Dependently Control Synaptic AMPA Receptor Gating. Neuron, 2007, 55, 905-918.	3.8	177
24	Stargazin interacts functionally with the AMPA receptor glutamate-binding module. Neuropharmacology, 2007, 52, 87-91.	2.0	61
25	Pharmacological regulation of ion channels by auxiliary subunits. Current Opinion in Drug Discovery & Development, 2007, 10, 565-72.	1.9	6
26	Auxiliary Subunits Assist AMPA-Type Glutamate Receptors. Science, 2006, 311, 1253-1256.	6.0	340
27	Stargazin controls the pharmacology of AMPA receptor potentiators. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10064-10067.	3.3	64
28	TARP Î ³ -8 controls hippocampal AMPA receptor number, distribution and synaptic plasticity. Nature Neuroscience, 2005, 8, 1525-1533.	7.1	240
29	Stargazin modulates AMPA receptor gating and trafficking by distinct domains. Nature, 2005, 435, 1052-1058.	13.7	447
30	Stargazin is an AMPA receptor auxiliary subunit. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 485-490.	3.3	152
31	Dynamic Interaction of Stargazin-like TARPs with Cycling AMPA Receptors at Synapses. Science, 2004, 303, 1508-1511.	6.0	221
32	Functional studies and distribution define a family of transmembrane AMPA receptor regulatory proteins. Journal of Cell Biology, 2003, 161, 805-816.	2.3	486
33	Protein palmitoylation: a regulator of neuronal development and function. Nature Reviews Neuroscience, 2002, 3, 791-802.	4.9	306
34	Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature, 2000, 408, 936-943.	13.7	975
35	Interaction of Nitric Oxide Synthase with the Postsynaptic Density Protein PSD-95 and α1-Syntrophin Mediated by PDZ Domains. Cell, 1996, 84, 757-767.	13.5	1,557