
Petra Scholze

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9567550/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oligomerization of the Human Serotonin Transporter and of the Rat GABA Transporter 1 Visualized by Fluorescence Resonance Energy Transfer Microscopy in Living Cells. Journal of Biological Chemistry, 2001, 276, 3805-3810.	1.6	176
2	Amphetamines Take Two to Tango: an Oligomer-Based Counter-Transport Model of Neurotransmitter Transport Explores the Amphetamine Action. Molecular Pharmacology, 2005, 67, 140-151.	1.0	109
3	Mutations within an Intramembrane Leucine Heptad Repeat Disrupt Oligomer Formation of the Rat GABA Transporter 1. Journal of Biological Chemistry, 2002, 277, 43682-43690.	1.6	108
4	Serotonin-transporter mediated efflux: A pharmacological analysis of amphetamines and non-amphetamines. Neuropharmacology, 2005, 49, 811-819.	2.0	93
5	The Role of Zinc Ions in Reverse Transport Mediated by Monoamine Transporters. Journal of Biological Chemistry, 2002, 277, 21505-21513.	1.6	80
6	Two Discontinuous Segments in the Carboxyl Terminus Are Required for Membrane Targeting of the Rat γ-Aminobutyric Acid Transporter-1 (GAT1). Journal of Biological Chemistry, 2004, 279, 28553-28563.	1.6	73
7	Quantitative Analysis of Inward and Outward Transport Rates in Cells Stably Expressing the Cloned Human Serotonin Transporter: Inconsistencies with the Hypothesis of Facilitated Exchange Diffusion. Molecular Pharmacology, 2001, 59, 1129-1137.	1.0	65
8	Detection Methods for Autoantibodies in Suspected Autoimmune Encephalitis. Frontiers in Neurology, 2018, 9, 841.	1.1	60
9	Novel Benzodiazepine-Like Ligands with Various Anxiolytic, Antidepressant, or Pro-Cognitive Profiles. Molecular Neuropsychiatry, 2019, 5, 84-97.	3.0	54
10	The neuronal glycine transporter 2 interacts with the PDZ domain protein syntenin-1. Molecular and Cellular Neurosciences, 2004, 26, 518-529.	1.0	53
11	Biochemical and functional properties of distinct nicotinic acetylcholine receptors in the superior cervical ganglion of mice with targeted deletions of nAChR subunit genes. European Journal of Neuroscience, 2010, 31, 978-993.	1.2	52
12	Disturbed neurotransmitter homeostasis in ether lipid deficiency. Human Molecular Genetics, 2019, 28, 2046-2061.	1.4	47
13	A Human Polymorphism in CHRNA5 Is Linked to Relapse to Nicotine Seeking in Transgenic Rats. Current Biology, 2018, 28, 3244-3253.e7.	1.8	36
14	Nicotinic acetylcholine receptors modulate osteoclastogenesis. Arthritis Research and Therapy, 2016, 18, 63.	1.6	32
15	Ester to amide substitution improves selectivity, efficacy and kinetic behavior of a benzodiazepine positive modulator of GABAA receptors containing the α5 subunit. European Journal of Pharmacology, 2016, 791, 433-443.	1.7	30
16	Affinity of various ligands for GABAA receptors containing α4β3γ2, α4γ2, or α1β3γ2 subunits. European Jour of Pharmacology, 1996, 304, 155-162.	nal 1.7	28
17	Different Benzodiazepines Bind with Distinct Binding Modes to GABA _A Receptors. ACS Chemical Biology, 2018, 13, 2033-2039.	1.6	28
18	Substantial loss of substrate by diffusion during uptake in HEK-293 cells expressing neurotransmitter transporters. Neuroscience Letters, 2001, 309, 173-176.	1.0	25

Petra Scholze

#	Article	IF	CITATIONS
19	Bi-directional transport of GABA in human embryonic kidney (HEK-293) cells stably expressing the rat GABA transporter GAT-1. British Journal of Pharmacology, 2002, 135, 93-102.	2.7	25
20	Molecular tools for GABAA receptors: High affinity ligands for β1-containing subtypes. Scientific Reports, 2017, 7, 5674.	1.6	25
21	Towards functional selectivity for α6β3γ2 GABA _A receptors: a series of novel pyrazoloquinolinones. British Journal of Pharmacology, 2018, 175, 419-428.	2.7	25
22	Trigeminal neuropathic pain development and maintenance in rats are suppressed by a positive modulator of α6 GABA _A receptors. European Journal of Pain, 2019, 23, 973-984.	1.4	24
23	Subunit composition of $\hat{l}\pm5\hat{a}\in\varepsilon$ ontaining nicotinic receptors in the rodent habenula. Journal of Neurochemistry, 2012, 121, 551-560.	2.1	22
24	Nicotinic acetylcholine receptors control acetylcholine and noradrenaline release in the rodent habenuloâ€interpeduncular complex. British Journal of Pharmacology, 2014, 171, 5209-5224.	2.7	20
25	A photoswitchable GABA receptor channel blocker. British Journal of Pharmacology, 2019, 176, 2661-2677.	2.7	20
26	The α5 Nicotinic Acetylcholine Receptor Subunit Differentially Modulates α4β2* and α3β4* Receptors. Frontiers in Synaptic Neuroscience, 2020, 12, 607959.	1.3	20
27	A novel de novo variant of GABRA1 causes increased sensitivity for GABA in vitro. Scientific Reports, 2020, 10, 2379.	1.6	18
28	Nicotinic acetylcholine receptorâ€subunit mRNAs in the mouse superior cervical ganglion are regulated by development but not by deletion of distinct subunit genes. Journal of Neuroscience Research, 2008, 86, 972-981.	1.3	15
29	GABAA Receptor Ligands Often Interact with Binding Sites in the Transmembrane Domain and in the Extracellular Domain—Can the Promiscuity Code Be Cracked?. International Journal of Molecular Sciences, 2020, 21, 334.	1.8	15
30	Singleâ€channel properties of α3β4, α3β4α5 and α3β4β2 nicotinic acetylcholine receptors in mice lacking spe nicotinic acetylcholine receptor subunits. Journal of Physiology, 2013, 591, 3271-3288.	ecific 1.3	14
31	Unexpected Properties of δ-Containing GABAA Receptors in Response to Ligands Interacting with the α+ βâ^' Site. Neurochemical Research, 2014, 39, 1057-1067.	1.6	14
32	Two Distinct Populations of α1α6-Containing GABAA-Receptors in Rat Cerebellum. Frontiers in Synaptic Neuroscience, 2020, 12, 591129.	1.3	11
33	α4β2 nicotinic acetylcholine receptors in the early postnatal mouse superior cervical ganglion. Developmental Neurobiology, 2011, 71, 390-399.	1.5	10
34	Exploring the Polyamine Regulatory Site of the NMDA Receptor: a Parallel Synthesis Approach. ChemMedChem, 2013, 8, 82-94.	1.6	10
35	Molecular Mingling: Multimodal Predictions of Ligand Promiscuity in Pentameric Ligand-Gated Ion Channels. Frontiers in Molecular Biosciences, 2022, 9, .	1.6	10
36	Dual mode of stimulation by the β-carboline ZK 91085 of recombinant GABAA receptor currents: molecular determinants affecting its action. British Journal of Pharmacology, 1999, 127, 1231-1239.	2.7	9

PETRA SCHOLZE

#	Article	IF	CITATIONS
37	Silencing of spontaneous activity at α4β1/3δ GABA A receptors in hippocampal granule cells reveals different ligand pharmacology. British Journal of Pharmacology, 2020, 177, 3975-3990.	2.7	9
38	Investigation of neurotrophic factor concentrations with a novel in vitro concept for peripheral nerve regeneration. Journal of Neuroscience Research, 2015, 93, 1631-1640.	1.3	8
39	Role of α5-containing nicotinic receptors in neuropathic pain and response to nicotine. Neuropharmacology, 2015, 95, 37-49.	2.0	8
40	Engineered Flumazenil Recognition Site Provides Mechanistic Insight Governing Benzodiazepine Modulation in GABA _A Receptors. ACS Chemical Biology, 2018, 13, 2040-2047.	1.6	8
41	The role of the nAChR subunits <i>α</i> 5, <i>β</i> 2, and <i>β</i> 4 on synaptic transmission in the mouse superior cervical ganglion. Physiological Reports, 2019, 7, e14023.	0.7	8
42	Nicotine stimulates ion transport via metabotropic β4 subunit containing nicotinic ACh receptors. British Journal of Pharmacology, 2020, 177, 5595-5608.	2.7	8
43	Acute nicotine administration stimulates ciliary activity via α3β4 nAChR in the mouse trachea. International Immunopharmacology, 2020, 84, 106496.	1.7	8
44	Coronaridine congeners potentiate GABAA receptors and induce sedative activity in mice in a benzodiazepine-insensitive manner. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2020, 101, 109930.	2.5	7
45	Tricyclic antipsychotics and antidepressants can inhibit α5â€containing GABA _A receptors by two distinct mechanisms. British Journal of Pharmacology, 2022, 179, 3675-3692.	2.7	7
46	Attaining in vivo selectivity of positive modulation of α3βγ2 GABAA receptors in rats: A hard task!. European Neuropsychopharmacology, 2018, 28, 903-914.	0.3	6
47	A de novo missense variant in <i>GABRA4</i> alters receptor function in an epileptic and neurodevelopmental phenotype. Epilepsia, 2022, 63, .	2.6	6
48	SAR-Guided Scoring Function and Mutational Validation Reveal the Binding Mode of CGS-8216 at the α1+/γ2– Benzodiazepine Site. Journal of Chemical Information and Modeling, 2018, 58, 1682-1696.	2.5	5
49	Induction of aquaporin 4-reactive antibodies in Lewis rats immunized with aquaporin 4 mimotopes. Acta Neuropathologica Communications, 2020, 8, 49.	2.4	5
50	A Benzodiazepine Ligand with Improved GABA _A Receptor <i>α</i> 5-Subunit Selectivity Driven by Interactions with Loop C. Molecular Pharmacology, 2021, 99, 39-48.	1.0	5
51	Allosteric Modulation of GABA _A Receptors in Rat Basolateral Amygdala Blocks Stress-Enhanced Reacquisition of Nicotine Self-Administration. ACS Pharmacology and Translational Science, 2020, 3, 1158-1164.	2.5	1
52	Interaction of manganese with striatal dopamine turnover in human alpha-synuclein transgenic mice. BMC Pharmacology, 2010, 10, .	0.4	0
53	Photomodulation of Inhibitory Neurotransmission. Insights from Molecular Modeling. Biophysical Journal, 2020, 118, 325a-326a.	0.2	0
54	Comparing the high affinity benzodiazepine binding site with the homologous "CGS 9895―site in GABAâ€A receptors (1059.1). FASEB Journal, 2014, 28, 1059.1.	0.2	0

#	Article	IF	CITATIONS
55	Imaging and Electrophysiology of Individual Neurites Functionally Isolated in Microchannels. Neuromethods, 2020, , 341-377.	0.2	ο
56	Allosteric Modulation of GABA Receptors in Rat Basolateral Amygdala Blocks Stress-Enhanced Reacquisition of Nicotine Self-Administration. ACS Pharmacology and Translational Science, 2020, 3, 1158-1164.	2.5	0