
Eiji Yuba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9567345/publications.pdf Version: 2024-02-01

ΕΠΙ ΥΠΒΑ

#	Article	IF	CITATIONS
1	PEGylated PAMAM dendrimer–doxorubicin conjugate-hybridized gold nanorod for combined photothermal-chemotherapy. Biomaterials, 2014, 35, 6576-6584.	5.7	176
2	A liposome-based antigen delivery system using pH-sensitive fusogenic polymers for cancer immunotherapy. Biomaterials, 2013, 34, 3042-3052.	5.7	172
3	Dextran derivative-based pH-sensitive liposomes for cancer immunotherapy. Biomaterials, 2014, 35, 3091-3101.	5.7	121
4	Multi-functional liposomes having temperature-triggered release and magnetic resonance imaging for tumor-specific chemotherapy. Biomaterials, 2011, 32, 1387-1395.	5.7	113
5	pH-Sensitive fusogenic polymer-modified liposomes as a carrier of antigenic proteins for activation of cellular immunity. Biomaterials, 2010, 31, 943-951.	5.7	111
6	Potentiation of pH-sensitive polymer-modified liposomes with cationic lipid inclusion as antigen delivery carriers for cancer immunotherapy. Biomaterials, 2014, 35, 8186-8196.	5.7	111
7	Carboxylated hyperbranched poly(glycidol)s for preparation of pH-sensitive liposomes. Journal of Controlled Release, 2011, 149, 72-80.	4.8	108
8	Hyaluronic Acid-Based pH-Sensitive Polymer-Modified Liposomes for Cell-Specific Intracellular Drug Delivery Systems. Bioconjugate Chemistry, 2018, 29, 44-55.	1.8	85
9	pH-sensitive polymer-liposome-based antigen delivery systems potentiated with interferon-γ gene lipoplex for efficient cancer immunotherapy. Biomaterials, 2015, 67, 214-224.	5.7	83
10	Bioactive polysaccharide-based pH-sensitive polymers for cytoplasmic delivery of antigen and activation of antigen-specific immunity. Biomaterials, 2017, 120, 32-45.	5.7	83
11	Development of functional liposomes by modification of stimuli-responsive materials and their biomedical applications. Journal of Materials Chemistry B, 2020, 8, 1093-1107.	2.9	79
12	Titanium dioxide nanoparticle-entrapped polyion complex micelles generate singlet oxygen in the cells by ultrasound irradiation for sonodynamic therapy. Biomaterials Science, 2013, 1, 65-73.	2.6	76
13	pH-sensitive polymer-modified liposome-based immunity-inducing system: Effects of inclusion of cationic lipid and CpG-DNA. Biomaterials, 2017, 141, 272-283.	5.7	73
14	Multifunctional liposomes having target specificity, temperature-triggered release, and near-infrared fluorescence imaging for tumor-specific chemotherapy. Journal of Controlled Release, 2015, 216, 69-77.	4.8	70
15	Carbon nanotube–liposome supramolecular nanotrains for intelligent molecular-transport systems. Nature Communications, 2012, 3, 1226.	5.8	68
16	Gene delivery to dendritic cells mediated by complexes of lipoplexes and pH-sensitive fusogenic polymer-modified liposomes. Journal of Controlled Release, 2008, 130, 77-83.	4.8	61
17	Liposome-based immunity-inducing systems for cancer immunotherapy. Molecular Immunology, 2018, 98, 8-12.	1.0	53
18	The application of pH-sensitive polymer-lipids to antigen delivery forÂcancer immunotherapy. Biomaterials, 2013, 34, 5711-5721.	5.7	49

Еіјі Үива

#	Article	IF	CITATIONS
19	Targeting inflammatory sites through collagen affinity enhances the therapeutic efficacy of anti-inflammatory antibodies. Science Advances, 2019, 5, eaay1971.	4.7	48
20	Effect of unsaturated alkyl chains on transfection activity of poly(amidoamine) dendron-bearing lipids. Journal of Controlled Release, 2012, 160, 552-560.	4.8	47
21	Emerging paradigms in nanotechnology for imaging and treatment of cerebral ischemia. Journal of Controlled Release, 2019, 300, 22-45.	4.8	47
22	Engineering anti-cancer nanovaccine based on antigen cross-presentation. Bioscience Reports, 2019, 39,	1.1	47
23	Polyamidoamine Dendron-Bearing Lipids as a Nonviral Vector: Influence of Dendron Generation. Bioconjugate Chemistry, 2012, 23, 871-879.	1.8	42
24	Evaluation of thermo-triggered drug release in intramuscular-transplanted tumors using thermosensitive polymer-modified liposomes and MRI. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 229-238.	1.7	41
25	Dual-stimuli responsive liposomes using pH- and temperature-sensitive polymers for controlled transdermal delivery. Polymer Chemistry, 2017, 8, 1507-1518.	1.9	41
26	Designing immunostimulatory double stranded messenger RNA with maintained translational activity through hybridization with poly A sequences for effective vaccination. Biomaterials, 2018, 150, 162-170.	5.7	41
27	Thermosensitive Molecular Assemblies from Poly(amidoamine) Dendronâ€Based Lipids. Angewandte Chemie - International Edition, 2011, 50, 6332-6336.	7.2	39
28	Improvement of Peptide-Based Tumor Immunotherapy Using pH-Sensitive Fusogenic Polymer-Modified Liposomes. Molecules, 2016, 21, 1284.	1.7	38
29	A Cyclized Helix‣oopâ€Helix Peptide as a Molecular Scaffold for the Design of Inhibitors of Intracellular Protein–Protein Interactions by Epitope and Arginine Grafting. Angewandte Chemie - International Edition, 2016, 55, 10612-10615.	7.2	38
30	Identification of glypican-3-derived long peptides activating both CD8 ⁺ and CD4 ⁺ T cells; prolonged overall survival in cancer patients with Th cell response. OncoImmunology, 2016, 5, e1062209.	2.1	36
31	Plant lectins and their usage in preparing targeted nanovaccines for cancer immunotherapy. Seminars in Cancer Biology, 2022, 80, 87-106.	4.3	36
32	Dual Signal-Responsive Liposomes for Temperature-Controlled Cytoplasmic Delivery. Bioconjugate Chemistry, 2011, 22, 1909-1915.	1.8	32
33	Bleomycin-Loaded pH-Sensitive Polymer–Lipid-Incorporated Liposomes for Cancer Chemotherapy. Polymers, 2018, 10, 74.	2.0	30
34	Development of pH-Responsive Hyaluronic Acid-Based Antigen Carriers for Induction of Antigen-Specific Cellular Immune Responses. ACS Biomaterials Science and Engineering, 2019, 5, 5790-5797.	2.6	28
35	Chondroitin Sulfate-Based pH-Sensitive Polymer-Modified Liposomes for Intracellular Antigen Delivery and Induction of Cancer Immunity. Bioconjugate Chemistry, 2019, 30, 1518-1529.	1.8	28
36	PAMAM Dendrimers with an Oxyethylene Unit-Enriched Surface as Biocompatible Temperature-Sensitive Dendrimers. Bioconjugate Chemistry, 2013, 24, 282-290.	1.8	27

Ειјι Υμβα

#	Article	IF	CITATIONS
37	Magnetically and Nearâ€Infrared Lightâ€Powered Supramolecular Nanotransporters for the Remote Control of Enzymatic Reactions. Angewandte Chemie - International Edition, 2016, 55, 6476-6481.	7.2	26
38	Application of pH-sensitive fusogenic polymer-modified liposomes for development of mucosal vaccines. Veterinary Immunology and Immunopathology, 2014, 158, 62-72.	0.5	24
39	Sonodynamic Therapeutic Effects of Sonosensitizers with Different Intracellular Distribution Delivered by Hollow Nanocapsules Exhibiting Cytosol Specific Release. Macromolecular Bioscience, 2019, 19, e1800365.	2.1	23
40	Environmental pH stress influences cellular secretion and uptake of extracellular vesicles. FEBS Open Bio, 2021, 11, 753-767.	1.0	23
41	Design of pH-sensitive polymer-modified liposomes for antigen delivery and their application in cancer immunotherapy. Polymer Journal, 2016, 48, 761-771.	1.3	22
42	Efficiency of pH-Sensitive Fusogenic Polymer-Modified Liposomes as a Vaccine Carrier. Scientific World Journal, The, 2013, 2013, 1-7.	0.8	21
43	Prolonged residence of an albumin–IL-4 fusion protein in secondary lymphoid organs ameliorates experimental autoimmune encephalomyelitis. Nature Biomedical Engineering, 2021, 5, 387-398.	11.6	20
44	Development of pH-sensitive Dextran Derivatives with Strong Adjuvant Function and Their Application to Antigen Delivery. Membranes, 2017, 7, 41.	1.4	19
45	The pH-Sensitive Fusogenic 3-Methyl-Glutarylated Hyperbranched Poly(Glycidol)-Conjugated Liposome Induces Antigen-Specific Cellular and Humoral Immunity. Vaccine Journal, 2012, 19, 1492-1498.	3.2	18
46	An oncofetal antigen, IMP-3-derived long peptides induce immune responses of both helper T cells and CTLs. OncoImmunology, 2016, 5, e1123368.	2.1	18
47	In Vivo Remote Control of Reactions in <i>Caenorhabditis elegans</i> by Using Supramolecular Nanohybrids of Carbon Nanotubes and Liposomes. Angewandte Chemie - International Edition, 2015, 54, 9903-9906.	7.2	17
48	Evaluation of pH-sensitive fusogenic polymer-modified liposomes co-loaded with antigen and α-galactosylceramide as an anti-tumor vaccine. Journal of Veterinary Medical Science, 2018, 80, 197-204.	0.3	17
49	Effects of Lyophilization of Arginine-rich Cell-penetrating Peptide-modified Extracellular Vesicles on Intracellular Delivery. Anticancer Research, 2019, 39, 6701-6709.	0.5	17
50	PAMAM Dendron Lipid Assemblies That Undergo Structural Transition in Response to Weakly Acidic pH and Their Cytoplasmic Delivery Capability. Langmuir, 2015, 31, 5105-5114.	1.6	16
51	Multifunctional Traceable Liposomes with Temperature-Triggered Drug Release and Neovasculature-Targeting Properties for Improved Cancer Chemotherapy. Molecular Pharmaceutics, 2021, 18, 3342-3351.	2.3	16
52	Intracellular Environment-Responsive Stabilization of Polymer Vesicles Formed from Head-Tail Type Polycations Composed of a Polyamidoamine Dendron and Poly(L-lysine). Molecules, 2013, 18, 12168-12179.	1.7	15
53	pH-Responsive Micelle-Based Cytoplasmic Delivery System for Induction of Cellular Immunity. Vaccines, 2017, 5, 41.	2.1	15
54	Macropinocytosis-Inducible Extracellular Vesicles Modified with Antimicrobial Protein CAP18-Derived Cell-Penetrating Peptides for Efficient Intracellular Delivery. Molecular Pharmaceutics, 2021, 18, 3290-3301.	2.3	15

Еіјі Үива

#	Article	IF	CITATIONS
55	Modification of liposome surface with pH-responsive polyampholytes for the controlled-release of drugs. Research on Chemical Intermediates, 2009, 35, 1015-1025.	1.3	14
56	Suppression of Rheumatoid Arthritis by Enhanced Lymph Node Trafficking of Engineered Interleukinâ€10 in Murine Models. Arthritis and Rheumatology, 2021, 73, 769-778.	2.9	14
57	Preparation of dual-stimuli-responsive liposomes using methacrylate-based copolymers with pH and temperature sensitivities for precisely controlled release. Colloids and Surfaces B: Biointerfaces, 2017, 155, 449-458.	2.5	13
58	Doxorubicin Delivery Using pH and Redox Dual-Responsive Hollow Nanocapsules with a Cationic Electrostatic Barrier. Pharmaceutics, 2017, 9, 4.	2.0	13
59	Nanofiber Polyplex Formation Based on the Morphology Elongation by the Intrapolyplex PEG Crowding Effect. ACS Macro Letters, 2014, 3, 333-336.	2.3	12
60	In Vitro Sonodynamic Therapeutic Effect of Polyion Complex Micelles Incorporating Titanium Dioxide Nanoparticles. Nanomaterials, 2017, 7, 268.	1.9	12
61	Bladder cancer-associated cancer-testis antigen-derived long peptides encompassing both CTL and promiscuous HLA class II-restricted Th cell epitopes induced CD4 ⁺ T cells expressing converged T-cell receptor genes <i>in vitro</i> . OncoImmunology, 2018, 7, e1415687.	2.1	12
62	Development of Mannose-Modified Carboxylated Curdlan-Coated Liposomes for Antigen Presenting Cell Targeted Antigen Delivery. Pharmaceutics, 2020, 12, 754.	2.0	12
63	Hollow nanocapsules prepared through stabilization of polymer vesicles formed from head–tail type polycations by introducing cross-linkages. Soft Matter, 2011, 7, 4629.	1.2	11
64	Synthesis of oligo(ethylene glycol)-modified hyperbranched poly(glycidol)s for dual sensitization of liposomes to pH and temperature. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 3054-3061.	2.7	11
65	Hyaluronic acid derivative-modified liposomes as pH-sensitive anticancer drug delivery system. Journal of Controlled Release, 2015, 213, e73-e74.	4.8	10
66	Effect of the side chain spacer structure on the pH-responsive properties of polycarboxylates. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 1025-1035.	1.9	10
67	pH-Sensitive branched β-glucan-modified liposomes for activation of antigen presenting cells and induction of antitumor immunity. Journal of Materials Chemistry B, 2021, 9, 7713-7724.	2.9	10
68	Effective Condensation of Multivalent Anions into Polyion Complex Micelles Prepared from TiO ₂ Nanoparticles and Polyallylamine Bearing Poly(ethylene glycol) Grafts. Langmuir, 2015, 31, 8583-8588.	1.6	9
69	Evaluation of a combination tumor treatment using thermo-triggered liposomal drug delivery and carbon ion irradiation. Translational Research, 2017, 185, 24-33.	2.2	9
70	Conferring extracellular matrix affinity enhances local therapeutic efficacy of anti-TNF-α antibody in a murine model of rheumatoid arthritis. Arthritis Research and Therapy, 2019, 21, 298.	1.6	9
71	Potentiation of cancer immunity-inducing effect by pH-sensitive polysaccharide-modified liposomes with combination of TGF-1² type I receptor inhibitor-embedded liposomes. Medical Research Archives, 2017, 5, .	0.1	9
72	Synthesis of a polyamidoamine dendron-bearing lipid having sugar moieties and its use for preparation of nonviral gene vectors. Research on Chemical Intermediates, 2009, 35, 1005-1014.	1.3	8

Ειјι Υμβά

#	Article	IF	CITATIONS
73	Magnetically and Nearâ€Infrared Lightâ€Powered Supramolecular Nanotransporters for the Remote Control of Enzymatic Reactions. Angewandte Chemie, 2016, 128, 6586-6591.	1.6	8
74	Induction of antibody response in the oral cavity of dogs following intraocular (eye drop) immunization with <i>Porphyromonas gingivalis</i> cell lysate incorporated in pH-sensitive fusogenic polymer-modified liposomes. Journal of Veterinary Medical Science, 2017, 79, 290-298.	0.3	8
75	Preparation of photothermal-chemotherapy nanohybrids by complexation of gold nanorods with polyamidoamine dendrimers having poly(ethylene glycol) and hydrophobic chains. Journal of Materials Chemistry B, 2020, 8, 2826-2833.	2.9	8
76	Carboxylated polyamidoamine dendron-bearing lipid-based assemblies for precise control of intracellular fate of cargo and induction of antigen-specific immune responses. Biomaterials Science, 2021, 9, 3076-3089.	2.6	8
77	Carboxylated phytosterol derivative-introduced liposomes for skin environment-responsive transdermal drug delivery system. Journal of Liposome Research, 2018, 28, 275-284.	1.5	7
78	Potent adjuvant effect elicited for tumor immunotherapy by a liposome conjugated pH-sensitive polymer and dendritic cell-targeting Toll-like-receptor ligand. Vaccine, 2022, 40, 1448-1457.	1.7	7
79	Dually functionalized dendrimers by temperature-sensitive surface modification and gold nanoparticle loading for biomedical application. RSC Advances, 2014, 4, 27811-27819.	1.7	6
80	A Cyclized Helixâ€Loopâ€Helix Peptide as a Molecular Scaffold for the Design of Inhibitors of Intracellular Protein–Protein Interactions by Epitope and Arginine Grafting. Angewandte Chemie, 2016, 128, 10770-10773.	1.6	6
81	Synthesis, Characterization, and Biomedical Applications of an Alkylated Quercetin–Gadolinium Complex. ACS Biomaterials Science and Engineering, 2019, 5, 1215-1227.	2.6	6
82	Nasal Delivery of Biopharmaceuticals. , 2014, , 197-220.		5
83	Enhancement of anti-tumor immune responses by transfection of IFNÎ ³ gene into tumor using a novel type synthetic vector. Veterinary Immunology and Immunopathology, 2014, 162, 59-64.	0.5	5
84	Gene Expression of Aspect Ratio-Controlled Polyplexes Based on the Effect of Multi-Arm Poly(ethylene) Tj ETQq0	0 0 rgBT / 2.6gBT /	Oyerlock 10
85	Stimuli-responsive polymer-modified liposomes and their application to DDS. , 2019, , 305-319.		4
86	Manipulation of the tumor microenvironment by cytokine gene transfection enhances dendritic cellâ€based immunotherapy. FASEB BioAdvances, 2020, 2, 5-17.	1.3	4
87	Fabrication of gold nanohybrids modified with antibody and functional dendrimers for targeted photothermal theranostics. Nano Select, 2021, 2, 779-790.	1.9	4
88	Effect of molecular adjuvant inclusion in pH-sensitive polymer-modified liposomes on their performance as antigen delivery carriers for cancer immunotherapy. Journal of Controlled Release, 2015, 213, e143.	4.8	3
89	Temperature-Responsive Molecular Assemblies Using Oligo(Ethylene Glycol)-Attached Polyamidoamine Dendron Lipids and their Functions as Drug Carriers. Journal of Functional Biomaterials, 2020, 11, 16.	1.8	3

90pH-sensitive polysaccharide derivatives-modified liposomes as antigen delivery vehicles for cancer
immunotherapy. Journal of Controlled Release, 2015, 213, e30.4.82

Ειјι Υυβά

#	Article	IF	CITATIONS
91	Hydrophilic Hyperbranched Polymer-Coated siRNA/Polyamidoamine Dendron-Bearing Lipid Complexes Preparation for High Colloidal Stability and Efficient RNAi. Bioconjugate Chemistry, 2021, 32, 563-571.	1.8	2
92	Antigen delivery using pH-sensitive polymer-modified liposomes and their application to cancer immunotherapy. Major Histocompatibility Complex, 2013, 20, 181-189.	0.2	2
93	Solubilization of a Hydrophobic Prodrug and the Ultrasound Irradiation Effect to TiO ₂ Nanoparticles-Incorporated Polyion Complex Micelles. Kobunshi Ronbunshu, 2018, 75, 42-47.	0.2	1
94	Light-Activatable Transfection System Using Hybrid Vectors Composed of Thermosensitive Dendron Lipids and Gold Nanorods. Pharmaceutics, 2020, 12, 239.	2.0	1
95	Cross-presentation-based nanovaccine for cancer immunotherapy. , 2022, , 349-396.		1
96	Design of pH-sensitive polymer-based antigen delivery systems for cancer immunotherapy. Drug Delivery System, 2015, 30, 160-161.	0.0	0
97	Development of Immunity-Inducing Systems Using pH-Responsive Polysaccharides and Liposomes. Kobunshi Ronbunshu, 2018, 75, 433-443.	0.2	0
98	Design of Functional Liposomes Based on Surface Modification with Polymers. Membrane, 2011, 36, 183-190.	0.0	0
99	Design of Cell-Specific Liposomal DDS by Surface Modification of Functional Polymers. Journal of the Society of Powder Technology, Japan, 2018, 55, 389-396.	0.0	0
100	Design of pH-sensitive polymer-based immunity-inducing systems. Drug Delivery System, 2019, 34, 163-172.	0.0	0
101	Development of pH-sensitive polymer- and liposome-based immunity-inducing systems: 12 th Young Scientist Award, Japan Society of DDS. Drug Delivery System, 2020, 35, 426-433.	0.0	0