Islam S Sobhy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9567333/publications.pdf Version: 2024-02-01

ISLAM S SORHY

#	Article	IF	CITATIONS
1	The maize lipoxygenase, <i>Zm<scp>LOX</scp>10</i> , mediates green leaf volatile, jasmonate and herbivoreâ€induced plant volatile production for defense against insect attack. Plant Journal, 2013, 74, 59-73.	2.8	217
2	Insect oral secretions suppress wound-induced responses in Arabidopsis. Journal of Experimental Botany, 2012, 63, 727-737.	2.4	127
3	Synergies and tradeâ€offs between insect and pathogen resistance in maize leaves and roots. Plant, Cell and Environment, 2011, 34, 1088-1103.	2.8	82
4	The prospect of applying chemical elicitors and plant strengtheners to enhance the biological control of crop pests. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20120283.	1.8	60
5	Less is More: Treatment with BTH and Laminarin Reduces Herbivore-Induced Volatile Emissions in Maize but Increases Parasitoid Attraction. Journal of Chemical Ecology, 2012, 38, 348-360.	0.9	59
6	Sweet Scents: Nectar Specialist Yeasts Enhance Nectar Attraction of a Generalist Aphid Parasitoid Without Affecting Survival. Frontiers in Plant Science, 2018, 9, 1009.	1.7	52
7	cis-Jasmone Elicits Aphid-Induced Stress Signalling in Potatoes. Journal of Chemical Ecology, 2017, 43, 39-52.	0.9	44
8	Habitat-specific variation in gut microbial communities and pathogen prevalence in bumblebee queens (Bombus terrestris). PLoS ONE, 2018, 13, e0204612.	1.1	39
9	Development, consumption rates and reproductive biology of Orius albidipennis reared on various prey. BioControl, 2010, 55, 753-765.	0.9	24
10	Volatiles of bacteria associated with parasitoid habitats elicit distinct olfactory responses in an aphid parasitoid and its hyperparasitoid. Functional Ecology, 2020, 34, 507-520.	1.7	24
11	Behavioural and Electrophysiological Responses of Female Anopheles gambiae Mosquitoes to Volatiles from a Mango Bait. Journal of Chemical Ecology, 2020, 46, 387-396.	0.9	22
12	Oral Secretions Affect HIPVs Induced by Generalist (Mythimna loreyi) and Specialist (Parnara guttata) Herbivores in Rice. Journal of Chemical Ecology, 2017, 43, 929-943.	0.9	21
13	Plant strengtheners enhance parasitoid attraction to herbivoreâ€damaged cotton via qualitative and quantitative changes in induced volatiles. Pest Management Science, 2015, 71, 686-693.	1.7	20
14	Priming of cowpea volatile emissions with defense inducers enhances the plant's attractiveness to parasitoids when attacked by caterpillars. Pest Management Science, 2018, 74, 966-977.	1.7	20
15	Associative learning and memory retention of nectar yeast volatiles in a generalist parasitoid. Animal Behaviour, 2019, 153, 137-146.	0.8	18
16	Identification and application of bacterial volatiles to attract a generalist aphid parasitoid: from laboratory to greenhouse assays. Pest Management Science, 2021, 77, 930-938.	1.7	18
17	Ethylene functions as a suppressor of volatile production in rice. Journal of Experimental Botany, 2020, 71, 6491-6511.	2.4	16
18	Bacterial phylogeny predicts volatile organic compound composition and olfactory response of an aphid parasitoid. Oikos, 2020, 129, 1415-1428.	1.2	15

#	Article	IF	CITATIONS
19	Bioactive Volatiles From Push-Pull Companion Crops Repel Fall Armyworm and Attract Its Parasitoids. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	15

20 Evaluation of African Maize Cultivars for Resistance to Fall Armyworm Spodoptera frugiperda (J. E.) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50

21	Sensing the Danger Signals: cis-Jasmone Reduces Aphid Performance on Potato and Modulates the Magnitude of Released Volatiles. Frontiers in Ecology and Evolution, 2020, 7, .	1.1	13
22	Effects of cis-Jasmone Treatment of Brassicas on Interactions With Myzus persicae Aphids and Their Parasitoid Diaeretiella rapae. Frontiers in Plant Science, 2021, 12, 711896.	1.7	12
23	Tomato treatment with chemical inducers reduces the performance of Spodoptera littoralis (Lepidoptera: Noctuidae). Applied Entomology and Zoology, 2015, 50, 175-182.	0.6	10
24	Wild potato ancestors as potential sources of resistance to the aphid <i>Myzus persicae</i> . Pest Management Science, 2022, 78, 3931-3938.	1.7	10
25	Life history traits of Blaptostethus pallescens (Hemiptera: Anthocoridae), a candidate for use in augmentative biological control in Egypt. Applied Entomology and Zoology, 2014, 49, 315-324.	0.6	9
26	Herbivoreâ€induced and constitutive volatiles are controlled by different oxylipinâ€dependent mechanisms in rice. Plant, Cell and Environment, 2021, 44, 2687-2699.	2.8	8
27	The Pupal Parasitoid Trichopria drosophilae Is Attracted to the Same Yeast Volatiles as Its Adult Host. Journal of Chemical Ecology, 2021, 47, 788-798.	0.9	7
28	Evolutionary ecology: Plant volatile profile changes after escaping specialist insects. Current Biology, 2021, 31, R969-R971.	1.8	1
29	Editorial: Inducing Plant Resistance Against Insects Using Exogenous Bioactive Chemicals: Key Advances and Future Perspectives. Frontiers in Plant Science, 2022, 13, 890884.	1.7	1