
Aram J Chung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9567249/publications.pdf Version: 2024-02-01

ADAM | CHUNC

#	Article	IF	CITATIONS
1	Development of a Photonic Switch via Electroâ€Capillarityâ€Induced Water Penetration Across a 10â€nm Gap. Small, 2022, 18, 2107060.	5.2	3
2	Microfluidic Impedanceâ€Deformability Cytometry for Labelâ€Free Single Neutrophil Mechanophenotyping. Small, 2022, 18, e2104822.	5.2	24
3	Microfluidic Impedanceâ€Deformability Cytometry for Labelâ€Free Single Neutrophil Mechanophenotyping (Small 18/2022). Small, 2022, 18, .	5.2	1
4	Nanoscale Terahertz Monitoring on Multiphase Dynamic Assembly of Nanoparticles under Aqueous Environment. Advanced Science, 2021, 8, e2004826.	5.6	12
5	Microfluidic and Nanofluidic Intracellular Delivery. Advanced Science, 2021, 8, e2004595.	5.6	34
6	Highly Efficient Transfection of Human Primary T Lymphocytes Using Droplet-Enabled Mechanoporation. ACS Nano, 2021, 15, 12888-12898.	7.3	36
7	Melanoma cells adopt features of both mesenchymal and amoeboid migration within confining channels. Scientific Reports, 2021, 11, 17804.	1.6	10
8	Microfluidic Cell Stretching for Highly Effective Gene Delivery into Hard-to-Transfect Primary Cells. ACS Nano, 2020, 14, 15094-15106.	7.3	55
9	Intracellular Nanomaterial Delivery <i>via</i> Spiral Hydroporation. ACS Nano, 2020, 14, 3048-3058.	7.3	45
10	A Minireview on Inertial Microfluidics Fundamentals: Inertial Particle Focusing and Secondary Flow. Biochip Journal, 2019, 13, 53-63.	2.5	63
11	Hydroporator: a hydrodynamic cell membrane perforator for high-throughput vector-free nanomaterial intracellular delivery and DNA origami biostability evaluation. Lab on A Chip, 2019, 19, 1747-1754.	3.1	50
12	Microfluidics-enabled orientation and microstructure control of macroscopic graphene fibres. Nature Nanotechnology, 2019, 14, 168-175.	15.6	207
13	Intracellular Delivery of Nanomaterials via an Inertial Microfluidic Cell Hydroporator. Nano Letters, 2018, 18, 2705-2710.	4.5	65
14	DIY 3D Microparticle Generation from Next Generation Optofluidic Fabrication. Advanced Science, 2018, 5, 1800252.	5.6	19
15	Inertial Microfluidic Cell Stretcher (iMCS): Fully Automated, Highâ€Throughput, and Near Realâ€Time Cell Mechanotyping. Small, 2017, 13, 1700705.	5.2	56
16	Microfluidics: Inertial Microfluidic Cell Stretcher (iMCS): Fully Automated, High-Throughput, and Near Real-Time Cell Mechanotyping (Small 28/2017). Small, 2017, 13, .	5.2	4
17	Non-spherical particle generation from 4D optofluidic fabrication. Lab on A Chip, 2016, 16, 2987-2995.	3.1	25
			_

Non-special particle generation from 4D optofluidic fabrication. , 2016, , .

Aram J Chung

#	Article	IF	CITATIONS
19	Continuous inertial microparticle and blood cell separation in straight channels with local microstructures. Lab on A Chip, 2016, 16, 532-542.	3.1	115
20	Optofluidic fabrication for 3D-shaped particles. Nature Communications, 2015, 6, 6976.	5.8	101
21	Density Assisted Optofluidic Fabrication of 3D Shaped Particles. , 2015, , .		0
22	Pulsed laser activated cell sorter (PLACS) for high-throughput fluorescent mammalian cell sorting. Proceedings of SPIE, 2014, , .	0.8	2
23	Advances in high-throughput single-cell microtechnologies. Current Opinion in Biotechnology, 2014, 25, 114-123.	3.3	86
24	Pulsed Laser Activated Cell Sorting with Three Dimensional Sheathless Inertial Focusing. Small, 2014, 10, 1746-1751.	5.2	66
25	Pulsed laser activated cell sorting with three dimensional sheathless inertial focusing. , 2014, , .		1
26	Sugar Additives Improve Signal Fidelity for Implementing Two-Phase Resorufin-Based Enzyme Immunoassays. Langmuir, 2014, 30, 6637-6643.	1.6	33
27	Three Dimensional, Sheathless, and Highâ€Throughput Microparticle Inertial Focusing Through Geometryâ€Induced Secondary Flows. Small, 2013, 9, 685-690.	5.2	163
28	Microstructure-induced helical vortices allow single-stream and long-term inertial focusing. Lab on A Chip, 2013, 13, 2942.	3.1	90
29	Microfluidics: Three Dimensional, Sheathless, and Highâ€Throughput Microparticle Inertial Focusing Through Geometryâ€Induced Secondary Flows (Small 5/2013). Small, 2013, 9, 804-804.	5.2	1
30	Implantable microfluidic and electronic systems for insect flight manipulation. Microfluidics and Nanofluidics, 2012, 13, 345-352.	1.0	18
31	Large area flexible SERS active substrates using engineered nanostructures. Nanoscale, 2011, 3, 2903.	2.8	91
32	Optofluidic waveguides for reconfigurable photonic systems. Optics Express, 2011, 19, 8602.	1.7	190
33	A novel polymer microneedle fabrication process for active fluidic delivery. Microfluidics and Nanofluidics, 2011, 10, 785-791.	1.0	13
34	Analysis of liquid-to-solid coupling and other performance parameters for microfluidically reconfigurable photonic systems. Optics Express, 2010, 18, 10973.	1.7	8
35	Reconfigurable Photonics from Microfluidic Waveguides. , 2010, , .		0
36	Surface enhanced Raman spectroscopy and its application to molecular and cellular analysis. Microfluidics and Nanofluidics, 2009, 6, 285-297.	1.0	186

Aram J Chung

#	Article	IF	CITATIONS
37	A robust, electrochemically driven microwell drug delivery system for controlled vasopressin release. Biomedical Microdevices, 2009, 11, 861-867.	1.4	58
38	Enhanced on-chip SERS based biomolecular detection using electrokinetically active microwells. Lab on A Chip, 2009, 9, 433-439.	3.1	103
39	Engineering insect flight metabolics using immature stage implanted microfluidics. Lab on A Chip, 2009, 9, 669-676.	3.1	20
40	Electrokinetic microfluidic devices for rapid, low power drug delivery in autonomous microsystems. Lab on A Chip, 2008, 8, 330-338.	3.1	85