J Hidalgo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9566811/publications.pdf

Version: 2024-02-01

26 papers	825 citations	687220 13 h-index	23 g-index
26	26	26	713 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Effect of Prior Austenite Grain Size Refinement by Thermal Cycling on the Microstructural Features of As-Quenched Lath Martensite. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 5288-5301.	1.1	159
2	Thermal and mechanical stability of retained austenite surrounded by martensite with different degrees of tempering. Materials Science & Diperties, Microstructure and Processing, 2017, 690, 337-347.	2.6	145
3	Characterization of bainitic/martensitic structures formed in isothermal treatments below the M s temperature. Materials Characterization, 2017, 128, 248-256.	1.9	108
4	Controlling the work hardening of martensite to increase the strength/ductility balance in quenched and partitioned steels. Materials and Design, 2017, 117, 248-256.	3.3	64
5	Torque rheology of zircon feedstocks for powder injection moulding. Journal of the European Ceramic Society, 2012, 32, 4063-4072.	2.8	57
6	Fracture mechanisms and microstructure in a medium Mn quenching and partitioning steel exhibiting macrosegregation. Materials Science & Digneering A: Structural Materials: Properties, Microstructure and Processing, 2019, 754, 766-777.	2.6	48
7	Influence of the prior athermal martensite on the mechanical response of advanced bainitic steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 735, 343-353.	2.6	26
8	Influence of M23C6 carbides on the heterogeneous strain development in annealed 420 stainless steel. Acta Materialia, 2020, 200, 74-90.	3.8	26
9	Effect of a binder system on the low-pressure powder injection moulding of water-soluble zircon feedstocks. Journal of the European Ceramic Society, 2013, 33, 3185-3194.	2.8	25
10	Capillary rheology studies of INVAR 36 feedstocks for powder injection moulding. Powder Technology, 2015, 273, 1-7.	2.1	23
11	Assessing the scale contributing factors of three carbide-free bainitic steels: A complementary theoretical and experimental approach. Materials and Design, 2021, 197, 109217.	3.3	18
12	Thermal stability and degradation kinetics of feedstocks for powder injection moulding $\hat{a}\in$ A new way to determine optimal solid loading?. Polymer Degradation and Stability, 2013, 98, 1188-1195.	2.7	17
13	Unravelling the mechanical behaviour of advanced multiphase steels isothermally obtained below M. Materials and Design, 2020, 188, 108484.	3.3	16
14	Interplay between metastable phases controls strength and ductility in steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 745, 185-194.	2.6	15
15	Mechanical and functional properties of Invar alloy for <i>ν </i> -MIM. Powder Metallurgy, 2014, 57, 127-136.	0.9	14
16	Water soluble Invar 36 feedstock development for \hat{l}_4 PIM. Journal of Materials Processing Technology, 2014, 214, 436-444.	3.1	14
17	Effect of the particle size and solids volume fraction on the thermal degradation behaviour of Invar 36 feedstocks. Polymer Degradation and Stability, 2013, 98, 2546-2555.	2.7	12
18	Powder injection moulding: processing of small parts of complex shape. International Journal of Microstructure and Materials Properties, 2013, 8, 87.	0.1	12

#	Article	IF	CITATIONS
19	Optimisation of eco-friendly binary binder system for powder injection moulding. Powder Metallurgy, 2014, 57, 196-203.	0.9	9
20	Use of the Correlation between Grain Size and Crystallographic Orientation in Crystal Plasticity Simulations: Application to AISI 420 Stainless Steel. Crystals, 2020, 10, 819.	1.0	5
21	The role of plastic strains on variant selection in ausformed bainitic microstructures studied by finite elements and crystal plasticity simulations. Journal of Materials Research and Technology, 2021, 13, 1416-1430.	2.6	4
22	Prospects of producing solid oxide fuels interconnectors processed by metal injection moulding. Results in Engineering, 2021, 11, 100268.	2.2	4
23	Isotonic regression for metallic microstructure data: estimation and testing under order restrictions. Journal of Applied Statistics, 0, , 1-20.	0.6	2
24	Influence of M $\langle sub \rangle 23 \langle sub \rangle C \langle sub \rangle 6 \langle sub \rangle Carbides on the Heterogeneous Strain Development in Annealed 420 Stainless Steel. SSRN Electronic Journal, 0, , .$	0.4	1
25	A Data-Driven Approach for Studying the Influence of Carbides on Work Hardening of Steel. Materials, 2022, 15, 892.	1.3	1
26	Metal injection molding (MIM) of stainless steel. , 2019, , 409-429.		0