Alessandro C Pavese

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9566427/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Powder neutron diffraction study of 2M1 muscovite at room pressure and at 2 GPa. European Journal of Mineralogy, 1994, 6, 171-178.	1.3	81
2	A kinetic study of the quartz–cristobalite phase transition. Journal of the European Ceramic Society, 2013, 33, 3403-3410.	5.7	76
3	Effects of soda–lime–silica waste glass on mullite formation kinetics and micro-structures development in vitreous ceramics. Journal of Environmental Management, 2013, 124, 100-107.	7.8	54
4	Synthetic MgAl ₂ O ₄ (spinel) at high-pressure conditions (0.0001–30 GPa): A synchrotron X-ray powder diffraction study. American Mineralogist, 2003, 88, 93-98.	1.9	53
5	Cation site ordering in phengite 3T from the Dora-Maira massif (western Alps): a variable-temperature neutron powder diffraction study. European Journal of Mineralogy, 1997, 9, 1183-1190.	1.3	51
6	Elastic behavior and phase stability of pollucite, a potential host for nuclear waste. American Mineralogist, 2009, 94, 1137-1143.	1.9	50
7	The effects of atmospheric multipollutants on modern concrete. Atmospheric Environment, 2003, 37, 4701-4712.	4.1	48
8	Tetrahedral order in phengite 2M1 upon heating, from powder neutron diffraction, and thermodynamic consequences. European Journal of Mineralogy, 1999, 11, 309-320.	1.3	48
9	Characterisation of mortar morphology in thin sections by digital image processing. Cement and Concrete Research, 2005, 35, 1613-1619.	11.0	45
10	P-V equation of State, thermal expansion, and P-T stability of synthetic zincochromite (ZnCr2O4) Tj ETQq0 0 0 r	gBT /Overl 1.9	ock 10 Tf 50
11	The formation of silica high temperature polymorphs from quartz: Influence of grain size and mineralising agents. Journal of the European Ceramic Society, 2015, 35, 4547-4555.	5.7	42
12	Cation distribution in synthetic zinc ferrite (Zn _{0.97} Fe _{2.02} O ₄) from in situ high-temperature neutron powder diffraction. American Mineralogist, 2000, 85, 1497-1502.	1.9	39
13	Pressure-volume-temperature equation of state of andradite and grossular, by high-pressure and -temperature powder diffraction. Physics and Chemistry of Minerals, 2001, 28, 242-248.	0.8	36
14	Leucite at high pressure: Elastic behavior, phase stability, and petrological implications. American Mineralogist, 2008, 93, 1588-1596.	1.9	35
15	On the crystal structure and compressional behavior of talc: a mineral of interest in petrology and material science. Physics and Chemistry of Minerals, 2013, 40, 145-156.	0.8	32
16	Influence of composition on some industrially relevant properties of traditional sanitary-ware glaze. Ceramics International, 2012, 38, 5859-5870.	4.8	29
17	The role of firing temperature, firing time and quartz grain size on phase-formation, thermal dilatation and water absorption in sanitary-ware vitreous bodies. Journal of the European Ceramic Society, 2011, 31, 1353-1360.	5.7	28

¹⁸ M1-site occupancy in 3T and 2M1 phengites by low temperature neutron powder diffraction: reality or 1.3 26 artefact?. European Journal of Mineralogy, 2001, 13, 1071-1078.

Alessandro C Pavese

#	Article	IF	CITATIONS
19	Equation of state and compressibility of phlogopite by in-situ high-pressure X-ray powder diffraction. European Journal of Mineralogy, 2003, 15, 455-463.	1.3	24
20	Elastic properties and stability of coexisting 3T and 2M 1 phengite polytypes. Physics and Chemistry of Minerals, 2006, 32, 670-678.	0.8	24
21	Elastic properties of andradite and grossular, by synchrotron X-ray diffraction at high pressure conditions. European Journal of Mineralogy, 2001, 13, 929-937.	1.3	23
22	Structural evolution of a 2M 1 phengite mica up to 11ÂGPa: an in situ single-crystal X-ray diffraction study. Physics and Chemistry of Minerals, 2010, 37, 581-591.	0.8	23
23	The effects of MgO, Na2O and SO3 on industrial clinkering process: phase composition, polymorphism, microstructure and hydration, using a multidisciplinary approach. Materials Characterization, 2019, 155, 109809.	4.4	23
24	P-V and T-V Equations of State of natural biotite: An in-situ high-pressure and high-temperature powder diffraction study, combined with Mossbauer spectroscopy. American Mineralogist, 2007, 92, 1158-1164.	1.9	21
25	Long-term leaching test in concretes: An X-ray powder diffraction study. Cement and Concrete Composites, 2008, 30, 700-705.	10.7	21
26	Structural evolution of a 3 <i>T</i> phengite mica up to 10 GPa: an <i>in-situ</i> single-crystal X-ray diffraction study. Zeitschrift Für Kristallographie, 2009, 224, 302-310.	1.1	21
27	Effects of particle size on properties and thermal inertization of bottom ashes (MSW of Turin's) Tj ETQq1 1 ().784314 i 7.4	rgBT/Overloc 20
28	Thermal expansion and dehydroxylation of phengite micas. Physics and Chemistry of Minerals, 2008, 35, 367-379.	0.8	19
29	An investigation of mortars affected by alkali-silica reaction by X-ray synchrotron microtomography: a preliminary study. Journal of Materials Science, 2009, 44, 5815-5823.	3.7	19
30	Sanitary-ware vitreous body characterization method by optical microscopy, elemental maps, image processing and X-ray powder diffraction. Journal of the European Ceramic Society, 2010, 30, 1267-1275.	5.7	19
31	Green andradite stones: gemmological and mineralogical characterisation. European Journal of Mineralogy, 2011, 23, 91-100.	1.3	18
32	Demantoid from Val Malenco, Italy: Review and update. Gems & Gemology, 2009, 45, .	0.6	18
33	Synchrotron X-ray powder diffraction study of natural P2 /n-omphacites at high-pressure conditions. Physics and Chemistry of Minerals, 2001, 28, 9-16.	0.8	17
34	Black limestone used in Lombard architecture. Journal of Cultural Heritage, 2002, 3, 241-249.	3.3	16
35	Kinetic study of mullite growth in sanitary-ware production by in situ HT-XRPD. The influence of the filler/flux ratio. Journal of the European Ceramic Society, 2011, 31, 273-280.	5.7	15
36	Local Structure of Si-Al-Ca-Na-O Glasses from Coupled Neutron and X-ray Total Scattering Data. Journal of Physical Chemistry B, 2012, 116, 13114-13123.	2.6	15

#	Article	IF	CITATIONS
37	2. Behavior of Micas at High-Pressure and High-Temperature. , 2002, , 99-116.		14
38	Deprotonation and order-disorder reactions as a function of temperature in a phengite 3T (Cima Pal,) Tj ETQq 2003, 15, 357-363.	0 0 0 rgBT /0 1.3	Overlock 10 Tf 14
39	Gemmological investigation of a synthetic blue beryl: a multi-methodological study. Mineralogical Magazine, 2008, 72, 799-808.	1.4	14
40	High-temperature treatment, hydrogen behaviour and cation partitioning of a FeTi bearing volcanic phlogopite by in situ neutron powder diffraction and FTIR spectroscopy. European Journal of Mineralogy, 2009, 21, 385-396.	1.3	12
41	On the crystal chemistry and elastic behavior of a phlogopite 3T. Physics and Chemistry of Minerals, 2011, 38, 655-664.	0.8	12
42	High-pressure synchrotron X-ray diffraction study of spessartine and uvarovite: A comparison between different equation of state models. American Mineralogist, 2004, 89, 371-376.	1.9	11
43	Effects of particle size distribution and starting phase composition in Na-feldspar/kaolinite system at high temperature. Journal of the European Ceramic Society, 2015, 35, 1327-1335.	5.7	11
44	Elastic behaviour and phase stability of pyrophyllite and talc at high pressure and temperature. Physics and Chemistry of Minerals, 2015, 42, 309-318.	0.8	11
45	Neutron powder diffraction and Rietveld analysis; applications to crystal-chemical studies of minerals at non-ambient conditions. European Journal of Mineralogy, 2002, 14, 241-249.	1.3	10
46	Soda-lime-silica-glass/quartz particle size and firing time: Their combined effect on sanitary-ware ceramic reactions and macroscopic properties. Ceramics International, 2017, 43, 10895-10904.	4.8	10
47	Modelling of thermo-chemical properties over the sub-solidus MgO–FeO binary, as a function of iron spin configuration, composition and temperature. Physics and Chemistry of Minerals, 2015, 42, 347-362.	0.8	9
48	Thermoelastic and structural properties of forsterite as a function of P and T : a computer simulation study, by semi-classical potentials. Physics and Chemistry of Minerals, 1998, 26, 44-54.	0.8	8
49	Lower mantle hydrogen partitioning between periclase and perovskite: A quantum chemical modelling. Geochimica Et Cosmochimica Acta, 2016, 173, 304-318.	3.9	8
50	About the relations between finite strain in non-cubic crystals and the related phenomenological P-V Equation of State. Physics and Chemistry of Minerals, 2005, 32, 269-276.	0.8	7
51	Chromatic weathering of black limestone quarried in Varenna (Lake Como, Italy). Building and Environment, 2007, 42, 68-77.	6.9	7
52	Na-feldspar (F) and kaolinite (K) system at high temperature: Resulting phase composition, micro-structural features and mullite-glass Gibbs energy of formation, as a function of F/K ratio and kaolinite crystallinity. Journal of the European Ceramic Society, 2013, 33, 3387-3395.	5.7	7
53	Modeling the Structure of Complex Aluminosilicate Glasses: The Effect of Zinc Addition. Journal of Physical Chemistry B, 2016, 120, 2526-2537.	2.6	7
54	Electron-density critical points analysis and catastrophe theory to forecast structure instability in periodic solids. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, 102-111.	0.1	7

#	Article	IF	CITATIONS
55	Local distortion and octahedral tilting in BaCe _{<i>x</i>} Ti _{1â^'<i>x</i>} O ₃ perovskite. Journal of Applied Crystallography, 2018, 51, 1283-1294.	4.5	7
56	About the reliability of the Maximum Entropy Method in reconstructing electron density: the case of MgO. Zeitschrift Fur Kristallographie - Crystalline Materials, 2006, 221, 613-620.	0.8	6
57	In situ high-temperature X-ray and neutron powder diffraction study of cation partitioning in synthetic Mg(Fe0.5Al0.5)2O4 spinel. Physics and Chemistry of Minerals, 2011, 38, 11-19.	0.8	6
58	Uncertainties on elastic parameters and occupancy factors: how do they affect the accuracy of the calculated Gibbs energy of minerals at (P,T) conditions? The case of 3T- versus 2M 1-phengite. Physics and Chemistry of Minerals, 2007, 34, 637-645.	0.8	5
59	Maximum entropy method: an unconventional approach to explore observables related to the electron density in phengites. Physics and Chemistry of Minerals, 2009, 36, 19-28.	0.8	5
60	Melting temperature prediction by thermoelastic instability: An ab initio modelling, for periclase (MgO). Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2021, 73, 102259.	1.6	5
61	Structure of soda-lime-aluminosilicate glasses as revealed by in-situ synchrotron powder diffraction experiments. Journal of Non-Crystalline Solids, 2021, 568, 120932.	3.1	5
62	The thermoelastic behavior of clintonite up to 10ÂGPa and 1,000°C. Physics and Chemistry of Minerals, 2012, 39, 385-397.	0.8	4
63	Fe-periclase reactivity at Earth's lower mantle conditions: Ab-initio geochemical modelling. Geochimica Et Cosmochimica Acta, 2017, 214, 14-29.	3.9	4
64	Low-pressure ferroelastic phase transition in rutile-type AX2 minerals: cassiterite (SnO2), pyrolusite (MnO2) and sellaite (MgF2). Physics and Chemistry of Minerals, 2019, 46, 987-1002.	0.8	4
65	Aluminium distribution in an Earth's non–primitive lower mantle. Geochimica Et Cosmochimica Acta, 2020, 276, 70-91.	3.9	4
66	High-temperature ramsdellite–pyrolusite transformation kinetics. Physics and Chemistry of Minerals, 2021, 48, 1.	0.8	4
67	Phengite megacryst quasi-exsolving phlogopite, from Sulu ultra-high pressure metamorphic terrane, Qinglongshan, Donghai County (eastern China): New data for P-T-X conditions during exhumation. Lithos, 2018, 314-315, 156-164.	1.4	3
68	Phlogopite-pargasite coexistence in an oxygen reduced spinel-peridotite ambient. Scientific Reports, 2021, 11, 11829.	3.3	3
69	How stacking disorder can conceal the actual structure of micas: the case of phengites. Physics and Chemistry of Minerals, 2013, 40, 375-386.	0.8	2
70	Control of the amorphous content in traditional ceramics by means of alternative fluxing agents. Journal of the European Ceramic Society, 2017, 37, 1831-1838.	5.7	2
71	Beyond the Vegard's law: solid mixing excess volume and thermodynamic potentials prediction, from end-members. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126059.	2.1	2
72	The notion of "distinguishability―between bulk elastic parameters on the basis of the Gibbs deformation energy. Physics and Chemistry of Minerals, 2010, 37, 535-541.	0.8	1