Lu Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9565076/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insight into the oxidation of phenolic pollutants by enhanced permanganate with biochar: The role of high-valent manganese intermediate species. Journal of Hazardous Materials, 2022, 430, 128460.	6.5	19
2	Enhanced Trace Tl Removal with Ferrate through the Addition of Mn(II): Effect and Mechanism. ACS ES&T Engineering, 2021, 1, 571-580.	3.7	14
3	Efficient Degradation of Organoarsenic by UV/Chlorine Treatment: Kinetics, Mechanism, Enhanced Arsenic Removal, and Cytotoxicity. Environmental Science & Technology, 2021, 55, 2037-2047.	4.6	33
4	Effect of ferrate pre-oxidation on algae-laden water ultrafiltration: Attenuating membrane fouling and decreasing formation potential of disinfection byproducts. Water Research, 2021, 190, 116690.	5.3	57
5	Chlorination decreases acute toxicity of iodophenols through the formation of iodate and chlorinated aliphatic disinfection byproducts. Water Research, 2021, 194, 116951.	5.3	18
6	Heterogeneous catalytic ozonation of atrazine with Mn-loaded and Fe-loaded biochar. Water Research, 2021, 193, 116860.	5.3	137
7	Overlooked enhancement of chloride ion on the transformation of reactive species in peroxymonosulfate/Fe(II)/NH2OH system. Water Research, 2021, 195, 116973.	5.3	37
8	Ferrate self-decomposition in water is also a self-activation process: Role of Fe(V) species and enhancement with Fe(III) in methyl phenyl sulfoxide oxidation by excess ferrate. Water Research, 2021, 197, 117094.	5.3	72
9	Further understanding the role of hydroxylamine in transformation of reactive species in Fe(II)/peroxydisulfate system. Chemical Engineering Journal, 2021, 418, 129464.	6.6	22
10	Ferrate Preoxidation Alleviating Membrane Fouling through the Formation of a Hydrophilic Prefiltration Layer. ACS ES&T Engineering, 2021, 1, 1576-1586.	3.7	17
11	Quantitively Analyzing the Variation of Micrometer-Sized Microplastic during Water Treatment with the Flow Cytometry-Fluorescent Beads Method. ACS ES&T Engineering, 2021, 1, 1668-1677.	3.7	12
12	Promotional effect of Mn(II)/K2FeO4 applying onto Se(IV) removal. Journal of Hazardous Materials, 2020, 384, 121264.	6.5	11
13	Comparative study about oxidation of trace N-nitrosamines by seven oxidation processes with a sensitivity improved determination method. Separation and Purification Technology, 2020, 236, 116009.	3.9	13
14	Ferrate oxidation of bisphenol F and removal of oxidation products with ferrate resulted particles. Chemical Engineering Journal, 2020, 383, 123167.	6.6	51
15	Unraveling the interaction of hydroxylamine and Fe(III) in Fe(II)/Persulfate system: A kinetic and simulating study. Water Research, 2020, 168, 115093.	5.3	78
16	Mechanism study about the adsorption of Pb(II) and Cd(II) with iron-trimesic metal-organic frameworks. Chemical Engineering Journal, 2020, 385, 123507.	6.6	108
17	Ferrate Oxidation of Phenolic Compounds in Iodine-Containing Water: Control of Iodinated Aromatic Products. Environmental Science & Technology, 2020, 54, 1827-1836.	4.6	32
18	Degradation of organic pollutants by ferrate/biochar: Enhanced formation of strong intermediate oxidative iron species. Water Research, 2020, 183, 116054.	5.3	92

Lu Wang

#	Article	IF	CITATIONS
19	A cost-effective Electro-Fenton process with graphite felt electrode aeration for degradation of dimethyl phthalate: Enhanced generation of H2O2 and iron recycling that simultaneously regenerates the electrode. Chemical Engineering Journal, 2020, 394, 125033.	6.6	44
20	A novel Electro-Fenton process characterized by aeration from inside a graphite felt electrode with enhanced electrogeneration of H2O2 and cycle of Fe3+/Fe2+. Journal of Hazardous Materials, 2020, 396, 122591.	6.5	89
21	Electrospun superhydrophilic membranes for effective removal of Pb(<scp>ii</scp>) from water. Nanoscale Advances, 2019, 1, 389-394.	2.2	28
22	Remarkable enhancement of a photochemical Fenton-like system (UV-A/Fe(II)/PMS) at near-neutral pH and low Fe(II)/peroxymonosulfate ratio by three alpha hydroxy acids: Mechanisms and influencing factors. Separation and Purification Technology, 2019, 224, 142-151.	3.9	31
23	Enhanced Permanganate Oxidation of Sulfamethoxazole and Removal of Dissolved Organics with Biochar: Formation of Highly Oxidative Manganese Intermediate Species and in Situ Activation of Biochar. Environmental Science & Technology, 2019, 53, 5282-5291.	4.6	127
24	Electrochemiluminescence for the identification of electrochemically active bacteria. Biosensors and Bioelectronics, 2019, 137, 222-228.	5.3	15
25	Comparative study on the oxidation of N,N-diethyl-3-methyl benzoyl amide by Mn(III) and peroxymonosulfate/Co(II): Selective and nonselective oxidation. Chemical Engineering Journal, 2019, 370, 962-972.	6.6	9
26	A novel nanostructured Fe-Ti-Mn composite oxide for highly efficient arsenic removal: Preparation and performance evaluation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 561, 364-372.	2.3	48
27	Comparative study on ferrate oxidation of BPS and BPAF: Kinetics, reaction mechanism, and the improvement on their biodegradability. Water Research, 2019, 148, 115-125.	5.3	98
28	Effects of newly prepared alkaline ferrate on sludge disintegration and methane production: Reaction mechanism and model simulation. Chemical Engineering Journal, 2018, 343, 520-529.	6.6	45
29	Efficient oxidation and sorption of arsenite using a novel titanium(IV)-manganese(IV) binary oxide sorbent. Journal of Hazardous Materials, 2018, 353, 410-420.	6.5	59
30	Anoxic biodegradation of triclosan and the removal of its antimicrobial effect in microbial fuel cells. Journal of Hazardous Materials, 2018, 344, 669-678.	6.5	56
31	Oxidation of odor compound indole in aqueous solution with ferrate (VI): Kinetics, pathway, and the variation of assimilable organic carbon. Chemical Engineering Journal, 2018, 331, 31-38.	6.6	43
32	Highly effective oxidation of roxarsone by ferrate and simultaneous arsenic removal with in situ formed ferric nanoparticles. Water Research, 2018, 147, 321-330.	5.3	70
33	Enhanced removal of arsenite and arsenate by a multifunctional Fe-Ti-Mn composite oxide: Photooxidation, oxidation and adsorption. Water Research, 2018, 147, 264-275.	5.3	129
34	Impact of Phosphate on Ferrate Oxidation of Organic Compounds: An Underestimated Oxidant. Environmental Science & Technology, 2018, 52, 13897-13907.	4.6	106
35	Removal of Organoarsenic with Ferrate and Ferrate Resultant Nanoparticles: Oxidation and Adsorption. Environmental Science & amp; Technology, 2018, 52, 13325-13335.	4.6	133
36	Electro-oxidation of indole-based squaraine dye: A combined in-situ spectroelectrochemical and theoretical study. Journal of Electroanalytical Chemistry, 2018, 827, 73-78.	1.9	6

Lu Wang

#	Article	IF	Citations
37	Rapid oxidation of iodide and hypoiodous acid with ferrate and no formation of iodoform and monoiodoacetic acid in the ferrate/lâ^'/HA system. Water Research, 2018, 144, 592-602.	5.3	49
38	Interpreting the effects of natural organic matter on antimicrobial activity of Ag2S nanoparticles with soft particle theory. Water Research, 2018, 145, 12-20.	5.3	31
39	Fate of As(III) and As(V) during Microbial Reduction of Arsenic-Bearing Ferrihydrite Facilitated by Activated Carbon. ACS Earth and Space Chemistry, 2018, 2, 878-887.	1.2	30
40	Biodegradation of sulfadiazine in microbial fuel cells: Reaction mechanism, biotoxicity removal and the correlation with reactor microbes. Journal of Hazardous Materials, 2018, 360, 402-411.	6.5	73
41	Enhanced electro-catalytic generation of hydrogen peroxide and hydroxyl radical for degradation of phenol wastewater using MnO2/Nano-G Foam-Ni/Pd composite cathode. Electrochimica Acta, 2018, 282, 416-426.	2.6	53
42	Highly efficient removal of trace thallium from contaminated source waters with ferrate: Role of in situ formed ferric nanoparticle. Water Research, 2017, 124, 149-157.	5.3	75
43	Improvement of settleability and dewaterability of sludge by newly prepared alkaline ferrate solution. Chemical Engineering Journal, 2016, 287, 11-18.	6.6	75
44	Rapid degradation of sulphamethoxazole and the further transformation of 3-amino-5-methylisoxazole in a microbial fuel cell. Water Research, 2016, 88, 322-328.	5.3	162
45	Efficient degradation of sulfamethoxazole and the response of microbial communities in microbial fuel cells. RSC Advances, 2015, 5, 56430-56437.	1.7	79
46	Polarization behavior of microbial fuel cells under stack operation. Science Bulletin, 2014, 59, 2214-2220.	1.7	15
47	Extracellular Electron Transfer Mediated by Flavins in Gram-positive Bacillus sp. WS-XY1 and Yeast Pichia stipitis Electrochimica Acta, 2014, 146, 564-567	2.6	74