Sher Singh Meena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9564474/publications.pdf

Version: 2024-02-01

228 6,179 44 66
papers citations h-index g-index

229 229 5061
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Effects of sintering temperature on microstructure, initial permeability and electric behaviour of Ni-Mn-Zn ferrites. Materials Chemistry and Physics, 2022, 275, 125250.	2.0	16
2	Investigation of structural and magnetic properties of La doped Co–Mn ferrite nanoparticles in the presence of α-Fe2O3 phase. Solid State Communications, 2022, 342, 114629.	0.9	15
3	Tailoring magnetic and dielectric properties of SrFe12O19/NiFe2O4 ferrite nanocomposites synthesized in presence of Calotropis gigantea (crown) flower extract. Journal of Alloys and Compounds, 2022, 900, 163415.	2.8	13
4	MnFe2O4 nano-flower: A prospective material for bimodal hyperthermia. Journal of Alloys and Compounds, 2022, 899, 163192.	2.8	7
5	Characterization study and recovery of copper from low grade copper ore through hydrometallurgical route. Advanced Powder Technology, 2022, 33, 103382.	2.0	5
6	Size dependent electronic structure of LiFePO ₄ probed using X-ray absorption and Mössbauer spectroscopy. Physical Chemistry Chemical Physics, 2022, 24, 9695-9706.	1.3	2
7	Aqueous spray-drying synthesis of alluaudite Na2+2xFe2â^x(SO4)3 sodium insertion material: studies of electrochemical activity, thermodynamic stability, and humidity-induced phase transition. Journal of Solid State Electrochemistry, 2022, 26, 1941-1950.	1.2	5
8	Magnetic, Dielectric and Ethanol Gas Sensing Properties of Poly(o-phenylenediamine)/(MnNi)Fe2O4 Nanocomposites and Quantum Chemical Calculations of (MnNi)Fe2O4. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 2173-2191.	1.9	3
9	Green synthesis based X-type Ba–Zn Hexaferrites: Their structural, Hysteresis, Mӧssbauer, dielectric and electrical properties. Materials Chemistry and Physics, 2022, 282, 125914.	2.0	7
10	Shielding performance of Mn Ni0.8–Zn0.2Fe2O4 (0.1â‰ x â‰ 0 .7) for electromagnetic interference (EMI) in X-band frequency. Ceramics International, 2022, 48, 9987-9997.	2.3	9
11	Synthesis, structural characterization and biological studies of Ni(II), Cu(II) and Fe(III) complexes of hydrazone derived from 2-(2-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)hydrazinyl)benzoic acid. Inorganica Chimica Acta, 2022, 536, 120919.	1.2	9
12	Paleoenvironmental Conditions during the Paleocene–Eocene Transition Imprinted within the Glauconitic Giral Member of the Barmer Basin, India. Minerals (Basel, Switzerland), 2022, 12, 56.	0.8	6
13	Spontaneous exchange bias in high energy ball milled MnBi alloys. Journal of Magnetism and Magnetic Materials, 2022, 557, 169478.	1.0	8
14	Plasma polymerized functional supermagnetic Fe3O4 nanostructured templates for laccase immobilization: A robust catalytic system for bio-inspired dye degradation. Environmental Science and Pollution Research, 2022, 29, 82524-82540.	2.7	6
15	BaTiO3/(Co0.8Ni0.1Mn0.1Fe1.9Ce0.1O4) composites: Analysis of the effect of Co0.8Ni0.1Mn0.1Fe1.9Ce0.1O4 doping at different concentrations on the structural, morphological, optical, magnetic, and magnetoelectric coupling properties of BaTiO3. Ceramics International, 2022, 48, 30499-30509.	2.3	18
16	Design and development of Ga-substituted Z-type hexaferrites for microwave absorber applications: M¶ssbauer, static and dynamic properties. Ceramics International, 2021, 47, 1145-1162.	2.3	29
17	Structural investigations on Mo, Cs and Ba ions-loaded iron phosphate glass for nuclear waste storage application. Journal of Alloys and Compounds, 2021, 850, 156715.	2.8	22
18	Evaluation of Structural, Micro-structural, Vibrational and Elastic Properties of Ni–Cu–Zn Nanoferrites: Role of Dopant Cu2+ at Constant 0.1 mol% in Ni–Zn Spinel Structure. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 1336-1346.	1.9	12

#	Article	IF	CITATIONS
19	Immobilization of crystalline Fe2O3 nanoparticles over SiO2 for creating an active and stable catalyst: A demand for high temperature sulfuric acid decomposition. Applied Catalysis B: Environmental, 2021, 283, 119610.	10.8	24
20	Surface engineered Tb and Co co-doped BiFeO3 nanoparticles for enhanced photocatalytic and magnetic properties. Journal of Materials Science: Materials in Electronics, 2021, 32, 7956-7972.	1.1	9
21	Insight into structural aspects and study of reaction kinetics of model [oxo(salen)iron(IV)] complexes with dipeptides. Polyhedron, 2021, 196, 114952.	1.0	O
22	Physical and in-vitro evaluation of pure and substituted MxCe1-xO2 (M = Co, Fe or Ti and x = 0.05) magnetic nanoparticles. Ceramics International, 2021, 47, 8812-8819.	2.3	0
23	Study of Magnetic and Electrical Properties of Poly(o-phenylenediamine)/Manganese Substituted ZnFe2O4 Nanocomposites. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 3441-3459.	1.9	3
24	Structural and magnetic properties of ordered inverse spinel Li Fe5O8. Journal of Alloys and Compounds, 2021, 865, 158849.	2.8	1
25	Glauconite authigenesis during the onset of the Paleocene-Eocene Thermal Maximum: A case study from the Khuiala Formation in Jaisalmer Basin, India. Palaeogeography, Palaeoclimatology, Palaeocology, 2021, 571, 110388.	1.0	23
26	Influence of samarium doping on structural, elastic, magnetic, dielectric, and electrical properties of nanocrystalline cobalt ferrite. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	31
27	Multiferroic properties and Mössbauer Study of M-type hexaferrite PbFe12O19 synthesized by the high energy ball milling. Materials Characterization, 2021, 177, 111168.	1.9	18
28	Studies on the uranium speciation in zinc iron phosphate (ZnIP) glass using Mössbauer and EXAFS spectroscopic investigations. Ceramics International, 2021, 47, 18323-18329.	2.3	1
29	TiO ₂ -Doped Ni _{0.4} Cu _{0.3} Zn _{0.3} Fe ₂ O ₄ Nanoparticles for Enhanced Structural and Magnetic Properties. ACS Omega, 2021, 6, 17931-17940.	1.6	20
30	Magnetic nanocomposites of Fe3C or Ni-substituted (Fe3C/Fe3O4) with carbon for degradation of methylene orange and p-nitrophenol. Journal of Cleaner Production, 2021, 309, 127372.	4.6	15
31	Study of structural, vibrational, elastic and magnetic properties of uniaxial anisotropic Ni-Zn nanoferrites in the context of cation distribution and magnetocrystalline anisotropy. Journal of Alloys and Compounds, 2021, 873, 159748.	2.8	21
32	Impact of annealing temperature on structural, optical, and Mössbauer properties of nanocrystalline NiFe2O4. Journal of Materials Science: Materials in Electronics, 2021, 32, 27232-27242.	1.1	2
33	\hat{I}^3 -Fe2O3 nanoflowers as efficient magnetic hyperthermia and photothermal agent. Applied Surface Science, 2021, 560, 150025.	3.1	36
34	Preparation of silica xerogel beads embedded with Fe2O3 nanoparticles and their characterization. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	2
35	Structural and magnetic properties of nanocrystalline equi-atomic spinel high-entropy oxide (AlCoFeMnNi)3O4 synthesised by microwave assisted co-precipitation technique. Journal of Alloys and Compounds, 2021, 878, 160269.	2.8	31
36	Effect on the structure and stability of iron phosphate glass with Sb and Te-ion loading for nuclear waste storage application. Journal of Non-Crystalline Solids, 2021, 570, 121016.	1.5	10

#	Article	IF	Citations
37	Synthesis, characterization & Diological studies of Mn(II), Fe(III) and Co(II) complexes of (Z)-1, 5-dimethyl-4-(2-(2-oxopropylidene) hydrazinyl)-2-phenyl-1H-pyrazol-3(2H)-one. Journal of Molecular Structure, 2020, 1201, 127110.	1.8	10
38	Investigation on structural, hysteresis, Mössbauer properties and electrical parameters of lightly Erbium substituted X-type Ba2Co2Er Fe28-O46 hexaferrites. Ceramics International, 2020, 46, 8209-8226.	2.3	27
39	Investigation of structural, magnetic and dielectric properties of gallium substituted Z-type Sr3Co2-Ga Fe24O41 hexaferrites for microwave absorbers. Journal of Alloys and Compounds, 2020, 822, 153470.	2.8	30
40	Structural and in-vitro assessment of Zn Fe3â^'C (0Ââ‰ x Ââ‰ x Ââ‰ x Î) nanoparticles as magnetic biomaterials. Applied Surface Science, 2020, 509, 144891.	3.1	10
41	Structural and electrochemical performance studies for nanocomposites of carbon with Fe3C or Mn-Substituted (Fe3C/Fe3O4) as anodes for Li-batteries. Applied Surface Science, 2020, 533, 147474.	3.1	12
42	Magnetic, electrical and gas sensing properties of poly(o-phenylenediamine)/MnCoFe2O4 nanocomposites. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	10
43	Effect of Copper Substitution on the Structural, Magnetic, and Dielectric Properties of M-Type Lead Hexaferrite. Journal of Electronic Materials, 2020, 49, 6024-6039.	1.0	14
44	Effect of heating temperature on structural, magnetic, and dielectric properties of Magnesium ferrites prepared in the presence of Solanum Lycopersicum fruit extract. Journal of Materials Science: Materials in Electronics, 2020, 31, 18445-18463.	1.1	30
45	Ferromagnetic Bismuth-Substituted CeO2 Nanostructures and Prevalence of Antiferromagnetic Clusters. Journal of Superconductivity and Novel Magnetism, 2020, 33, 3941-3947.	0.8	7
46	Physical and in vitro evaluation of ultra-fine cohenite particles for the prospective magnetic hyperthermia application. Journal of Materials Science: Materials in Electronics, 2020, 31, 10772-10782.	1.1	5
47	Effect of crystallite size on the phase transition behavior of heterosite FePO ₄ . Physical Chemistry Chemical Physics, 2020, 22, 15478-15487.	1.3	6
48	Influence of addition of Al3+ on the structural and solid state properties of nanosized Ni–Zn ferrites synthesized using malic acid as a novel fuel. Journal of Alloys and Compounds, 2020, 842, 155855.	2.8	13
49	Influence of Co4+-Ca2+ substitution on structural, microstructure, magnetic, electrical and impedance characteristics of M-type barium–strontium hexagonal ferrites. Ceramics International, 2020, 46, 24816-24830.	2.3	36
50	Physical and in-vitro evaluation of Ïμ-Fe3N@Fe3O4 nanoparticles for bioapplications. Ceramics International, 2020, 46, 10952-10962.	2.3	14
51	Study of magnetic behavior in co-precipitated Ni–Zn ferrite nanoparticles and their potential use for gas sensor applications. Journal of Magnetism and Magnetic Materials, 2020, 502, 166534.	1.0	58
52	Structural, optical, elastic and magnetic properties of Ce and Dy doped cobalt ferrites. Journal of Alloys and Compounds, 2020, 834, 155089.	2.8	43
53	Studies of structural, magnetic and dielectric properties of X-type Barium Zinc hexaferrite Ba2Zn2Fe28O46 powder prepared by combustion treatment method using ginger root extract as a green reducing agent. Journal of Alloys and Compounds, 2020, 842, 155120.	2.8	28
54	Effect of cobalt-doping on dielectric, magnetic and optical properties of BiFeO3 nanocrystals synthesized by sol – gel technique. Solid State Sciences, 2020, 102, 106168.	1.5	17

#	Article	IF	Citations
55	Evaluation of structural and dielectric properties of Mn2+-substituted Zn-spinel ferrite nanoparticles for gas sensor applications. Sensors and Actuators B: Chemical, 2020, 316, 128127.	4.0	27
56	Process hybridization for nuclear effluent treatment. AIP Conference Proceedings, 2020, , .	0.3	1
57	Morphological and chromatographical characterization of RAD-effluent trammelled resin. AIP Conference Proceedings, 2020, , .	0.3	0
58	Effect of synthesis temperature on magnetization and properties of Y-Fe-garnet. AIP Conference Proceedings, 2020, , .	0.3	0
59	Structural and Mössbauer spectroscopic studies of Mn-substituted Cu-ferrite nanoparticles. AIP Conference Proceedings, 2020, , .	0.3	0
60	Study of Higher Discharge Capacity, Phase Transition, and Relative Structural Stability in Li ₂ FeSiO ₄ Cathode upon Lithium Extraction Using an Experimental and Theoretical Approach and Full Cell Prototype Study. ACS Applied Energy Materials, 2019, 2, 6584-6598.	2.5	21
61	Fine particle effects on the magnetic behaviour of Mn–substituted Zn–ferrite nanoparticles. AIP Conference Proceedings, 2019, , .	0.3	0
62	Facile single phase synthesis of Sr, Co co-doped BiFeO3 nanoparticles for boosting photocatalytic and magnetic properties. Applied Surface Science, 2019, 493, 593-604.	3.1	42
63	Rietveld refinement and FTIR spectroscopic studies of Ni2+-substituted Zn-ferrite nanoparticles. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	17
64	Zr-substituted cobalt oxide nanoparticles: structural, magnetic and electrical properties. Journal of Materials Science: Materials in Electronics, 2019, 30, 20088-20098.	1.1	6
65	Characterization and performance of nuclear plant floor washed effluent treated resin. AIP Conference Proceedings, 2019, , .	0.3	0
66	Effect of precursors on the structural, magnetic, dielectric, microwave and electromagnetic properties of Co–Zr doped nanocrystalline strontium hexaferrites synthesized via sol–gel method. SN Applied Sciences, 2019, 1, 1.	1.5	5
67	Stability of ferroelectric phases and magnetoelectric response in multiferroic (1-x)Bi(Ni1/2Ti1/2)O3-PbTiO3/xNi0.6Zn0.4Fe2O4 particulate composites. Ceramics International, 2019, 45, 23013-23021.	2.3	19
68	Synthesis and structural characterization of Co _x Fe _{3â^x} C (0 ≤i>x ≤0.3) magnetic nanoparticles for biomedical applications. New Journal of Chemistry, 2019, 43, 3536-3544.	1.4	12
69	Structural and electrochemical investigation of binary Na2Fe1-xZnxP2O7 (0 ≤ ≤) pyrophosphate cathodes for sodium-ion batteries. Journal of Solid State Chemistry, 2019, 277, 329-336.	1.4	12
70	Magnetic and dielectric properties of Zn substituted cobalt oxide nanoparticles. Ceramics International, 2019, 45, 16512-16520.	2.3	31
71	Enhanced electrical, magnetic and optical behaviour of Cr doped Bi0.98Ho0.02FeO3 nanoparticles. Journal of Alloys and Compounds, 2019, 796, 229-236.	2.8	23
72	Enhanced dielectric, magnetic and optical properties of Cr-doped BiFeO3 multiferroic nanoparticles synthesized by sol-gel route. Results in Physics, 2019, 13, 102299.	2.0	50

#	Article	IF	CITATIONS
73	High Mg-glauconite in the Campanian Duwi Formation of Abu Tartur Plateau, Egypt and its implications. Journal of African Earth Sciences, 2019, 156, 12-25.	0.9	20
74	Synthesis of exchange coupled nanoflowers for efficient magnetic hyperthermia. Journal of Magnetism and Magnetic Materials, 2019, 484, 437-444.	1.0	31
75	Magnetic field regulated, controlled hyperthermia with Li Fe3-O4 (0.06 ≤ ≤0.3) nanoparticles. Ceramics International, 2019, 45, 12028-12034.	2.3	15
76	Fe3C nanoparticles for magnetic hyperthermia application. Journal of Magnetism and Magnetic Materials, 2019, 481, 251-256.	1.0	51
77	Mineralogical studies of low grade iron ore from Bellary-Hospet region, India. AIP Conference Proceedings, 2019, , .	0.3	0
78	Structural and magnetic properties of CuFe2O4 ferrite nanoparticles synthesized by cow urine assisted combustion method. Journal of Magnetism and Magnetic Materials, 2019, 484, 120-125.	1.0	69
79	Sustainable preparation of sunlight active α-Fe ₂ O ₃ nanoparticles using iron containing ionic liquids for photocatalytic applications. RSC Advances, 2019, 9, 41803-41810.	1.7	11
80	Formation of non-alloyed Ti/Al/Ni/Au low-resistance ohmic contacts on reactively ion-etched n-type GaN by surface treatment for GaN light-emitting diodes applications. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	6
81	XRD, EDX, FTIR and ESR spectroscopic studies of co-precipitated Mn–substituted Zn–ferrite nanoparticles. Ceramics International, 2019, 45, 8037-8044.	2.3	93
82	Mössbauer Study and Curie Temperature Configuration on Sintering Nano-Ni-Zn Ferrite Powder. Journal of Superconductivity and Novel Magnetism, 2019, 32, 2141-2147.	0.8	8
83	Investigation of magnetic properties for Hf4+ substituted CeO2 nanoparticles for spintronic applications. Journal of Materials Science: Materials in Electronics, 2018, 29, 10614-10623.	1.1	15
84	Mn-substituted cerium oxide nanostructures and their magnetic properties. Materials Research Bulletin, 2018, 104, 65-71.	2.7	9
85	$M\tilde{A}\P ssbauer$ spectroscopic study of cobalt hexacyanoferrate nanoparticles: Effect of hydrogenation. AIP Conference Proceedings, 2018, , .	0.3	0
86	Controlled synthesis and enhanced tunnelling magnetoresistance in oriented Fe ₃ O ₄ nanorod assemblies. Journal Physics D: Applied Physics, 2018, 51, 085002.	1.3	27
87	Synthesis of CoFe Prussian blue analogue/poly vinylidene fluoride nanocomposite material with improved thermal stability and ferroelectric properties. New Journal of Chemistry, 2018, 42, 4567-4578.	1.4	19
88	Influence of Mg substitution on structural, magnetic and dielectric properties of X-type barium zinc hexaferrites Ba2Zn2-xMgxFe28O46. Journal of Alloys and Compounds, 2018, 741, 377-391.	2.8	100
89	Optimization of lithium content in LiFePO ₄ for superior electrochemical performance: the role of impurities. RSC Advances, 2018, 8, 1140-1147.	1.7	20
90	Zn _x Fe _{3â^'x} O ₄ (0.01 ≤i>x ≤0.8) nanoparticles for controlled magnetic hyperthermia application. New Journal of Chemistry, 2018, 42, 7144-7153.	1.4	55

#	Article	IF	Citations
91	Preparation, Electrical and Magnetic Properties of Poly(m-phenylenediamine)/ZnFe2O4 Nanocomposites. Journal of Superconductivity and Novel Magnetism, 2018, 31, 497-504.	0.8	11
92	High temperature dielectric studies of indium-substituted NiCuZn nanoferrites. Journal of Physics and Chemistry of Solids, 2018, 112, 29-36.	1.9	34
93	Structural and magnetic investigations: Study of magnetocrystalline anisotropy and magnetic behavior of 0.1% Cu2+ substituted Ni–Zn ferrite nanoparticles. Ceramics International, 2018, 44, 1193-1200.	2.3	28
94	Influence of rare earth ion doping (Ce and Dy) on electrical and magnetic properties of cobalt ferrites. Journal of Magnetism and Magnetic Materials, 2018, 449, 319-327.	1.0	130
95	Magnetic interactions and dielectric dispersion in Mg substituted M-type Sr-Cu hexaferrite nanoparticles prepared using one step solvent free synthesis technique. Ceramics International, 2018, 44, 4426-4435.	2.3	49
96	Catalytic properties of dispersed iron oxides Fe2O3/MO2 (MÂ=ÂZr, Ce, Ti and Si) for sulfuric acid decomposition reaction: Role of support. International Journal of Hydrogen Energy, 2018, 43, 37-52.	3.8	47
97	Nanoscale-driven structural changes and associated superparamagnetism in magnetically diluted Ni–Zn ferrites. Materials Chemistry Frontiers, 2018, 2, 300-312.	3.2	23
98	Pre-concentration technique for reduction in "Analytical instrument requirement and analysis― AIP Conference Proceedings, 2018, , .	0.3	1
99	Structural, magnetic and dielectric properties of Co-Zr substituted M-type calcium hexagonal ferrite nanoparticles in the presence of α-Fe2O3 phase. Ceramics International, 2018, 44, 17812-17823.	2.3	131
100	Structural and electron spin resonance spectroscopic studies of Mn Zn1â^Fe2O4 (x = 0.5, 0.6, 0.7) nanoferrites synthesized by sol-gel auto combustion method. Journal of Magnetism and Magnetic Materials, 2018, 466, 60-68.	1.0	53
101	DPASV analytical technique for ppb level uranium analysis. AIP Conference Proceedings, 2018, , .	0.3	3
102	Cobalt substituted nickel ferrites via Pechini's sol–gel citrate route: X-band electromagnetic characterization. Journal of Magnetism and Magnetic Materials, 2018, 466, 430-445.	1.0	109
103	Synthesis, Spectral and Biological Studies of Complexes with Bidentate Azodye Ligand Derived from Resorcinol and 1-Amino-2-Naphthol-4-Sulphonic Acid. Oriental Journal of Chemistry, 2018, 34, 45-54.	0.1	10
104	Quantification of charge carriers participating antiferromagnetic to weak ferromagnetic phase transition in Na doped LaFeO3 nano multiferroics. Journal of Applied Physics, 2018, 124, 084102.	1.1	9
105	Effect of non-stoichiometry in lead hexaferrites on magnetic and dielectric properties. Materials Chemistry and Physics, 2018, 220, 137-148.	2.0	15
106	Structural and MÃ \P ssbauer analysis of pure and Ce-Dy doped cobalt ferrite nanoparticles. AIP Conference Proceedings, 2018, , .	0.3	0
107	The distinctive compositional evolution of glauconite in the Cretaceous Ukra Hill Member (Kutch) Tj ETQq $1\ 1\ 0.7$	'84314 rgl 1.5	3T 49verlock
108	Influence of rare earth (Nd+3) doping on structural and magnetic properties of nanocrystalline manganese-zinc ferrite. Materials Chemistry and Physics, 2017, 191, 215-224.	2.0	70

#	Article	IF	Citations
109	Room temperature ferroelectricity in one-dimensional single chain molecular magnets [{M(Δ)M(l›)}(ox)2(phen)2]n (M = Fe and Mn). Applied Physics Letters, 2017, 110, 102901.	1.5	8
110	Stabilization of temperature during magnetic hyperthermia by Ce substituted magnetite nanoparticles. Journal of Magnetism and Magnetic Materials, 2017, 434, 181-186.	1.0	61
111	Enabling the Electrochemical Activity in Sodium Iron Metaphosphate [NaFe(PO ₃) ₃] Sodium Battery Insertion Material: Structural and Electrochemical Insights. Inorganic Chemistry, 2017, 56, 5918-5929.	1.9	29
112	Influence of Mn Substitution on MÃ \P ssbauer and Magnetic Properties of Ni-Zn Ferrite Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2017, 30, 3241-3246.	0.8	13
113	Investigation of Resistivity, Magnetic Susceptibility and Dielectric Properties of Nanocrystalline Ni-Mn-Zn Ferrites. Journal of Superconductivity and Novel Magnetism, 2017, 30, 1287-1292.	0.8	6
114	Nanostructured Fe2O3 dispersed on SiO2 as catalyst for high temperature sulfuric acid decomposition—Structural and morphological modifications on catalytic use and relevance of Fe2O3-SiO2 interactions. Applied Catalysis B: Environmental, 2017, 217, 154-168.	10.8	65
115	Structural and magnetic properties of Cr doped BiFeO3 multiferroic nanoparticles. AIP Conference Proceedings, 2017, , .	0.3	1
116	Investigation of cation distribution and magnetocrystalline anisotropy of Ni x Cu $0.1 \text{Zn} 0.9 \text{a}^2 \text{x}$ Fe 2 O 4 nanoferrites: Role of constant mole percent of Cu $2+$ dopant in place of Zn $2+$. Ceramics International, $2017, 43, 7984-7991$.	2.3	47
117	Effect of Cu2+ substitution on the magnetic properties of co-precipitated Ni-Cu-Zn ferrite nanoparticles. AIP Conference Proceedings, 2017, , .	0.3	1
118	Electrical and magnetic properties of poly(m-phenylenediamine)/NiFe2O4 nanocomposites. Journal of Materials Science: Materials in Electronics, 2017, 28, 15754-15761.	1.1	10
119	Elucidation of phase evolution, microstructural, MÃ \P ssbauer and magnetic properties of Co2+Al3+ doped M-type Ba Sr hexaferrites synthesized by a ceramic method. Journal of Alloys and Compounds, 2017, 695, 1112-1121.	2.8	86
120	The effect of Mn on the structural and magnetic behaviour of Fe–6Si–8B alloy produced by high energy ball Milling. Transactions of the Indian Institute of Metals, 2017, 70, 1431-1436.	0.7	3
121	Characterization of Nano-Particle Co1â^x Zn x Fe2O4 Synthesized Using Alove Vera Gel. Journal of Superconductivity and Novel Magnetism, 2017, 30, 395-399.	0.8	1
122	Modulation of physico-chemical, magnetic, microwave and electromagnetic properties of nanocrystalline strontium hexaferrite by Co-Zr doping synthesized using citrate precursor sol-gel method. Ceramics International, 2017, 43, 590-598.	2.3	48
123	Electrical resistivity and $M\tilde{A}^{r}$ ssbauer studies of Cr substituted Co nano ferrites. Journal of Alloys and Compounds, 2017, 694, 366-374.	2.8	41
124	SEM, magnetization and MÃ \P ssbauer spectroscopic characterization of Fe-U sequestration. AIP Conference Proceedings, 2017, , .	0.3	4
125	Structural, Conductivity, and Dielectric Properties of Co0.5Mg0.5La0.1Fe1.9O4 Ferrite Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2016, 29, 2813-2819.	0.8	5
126	AC magnetic field regulated in-vivo switch of Hf-substituted magnetite (Hf Fe3â^'O4, 0.01Ââ‰ÂxÂâ‰Â0.8) nanoparticles. Journal of Alloys and Compounds, 2016, 688, 219-227.	2.8	14

#	Article	IF	Citations
127	Superparamagnetic behavior of heat treated Mg0.5Zn0.5Fe2O4 ferrite nanoparticles studied by MA \P ssbauer spectroscopy. AIP Conference Proceedings, 2016, , .	0.3	2
128	Structural and magnetic properties of Prussian blue analogue molecular magnet Fe1.5[Cr(CN)6] \hat{A} ·mH2O. AIP Conference Proceedings, 2016, , .	0.3	4
129	Quantification of site disorder and its role on spin polarization in the nearly half-metallic Heusler alloy NiFeMnSn. Physical Review B, 2016, 94, .	1.1	25
130	Magnetic proximity effect in ferrimagnetic–ferromagnetic core–shell Prussian blue analogues molecular magnet. Chemical Physics Letters, 2016, 651, 155-160.	1.2	22
131	Anisotropy and domain state dependent enhancement of single domain ferrimagnetism in cobalt substituted Ni–Zn ferrites. New Journal of Chemistry, 2016, 40, 9275-9284.	1.4	20
132	Structural, thermal and magnetic studies of MgxZn1â^'xFe2O4 nanoferrites: Study of exchange interactions on magnetic anisotropy. Ceramics International, 2016, 42, 19179-19186.	2.3	42
133	Large tunneling magnetoresistance in octahedral Fe3O4 nanoparticles. AIP Advances, 2016, 6, .	0.6	26
134	Characterization of PAH matrix with monazite stream containing uranium, gadolinium and iron. AlP Conference Proceedings, 2016 , , .	0.3	3
135	Revealing structural distortion and dielectric relaxation in Ga1â^'Sc FeO3 (0â‰ x â‰ 9 .3). Journal of Magnetism and Magnetic Materials, 2016, 417, 165-174.	1.0	12
136	Synthesis of Co-Zr doped nanocrystalline strontium hexaferrites by sol-gel auto-combustion route using sucrose as fuel and study of their structural, magnetic and electrical properties. Ceramics International, 2016, 42, 14475-14489.	2.3	61
137	Structural and magnetic characterization of co-precipitated Ni Zn1â^Fe2O4 ferrite nanoparticles. Journal of Magnetism and Magnetic Materials, 2016, 407, 135-141.	1.0	74
138	Fe–Ni solid solutions in nano-size dimensions: Effect of hydrogen annealing. Materials Research Bulletin, 2016, 74, 447-451.	2.7	6
139	Quaternary ammonium bearing hyper-crosslinked polymer encapsulation on Fe ₃ O ₄ nanoparticles. RSC Advances, 2016, 6, 21317-21325.	1.7	21
140	Zinc oxide functionalized human hair: A potential water decontaminating agent. Journal of Colloid and Interface Science, 2016, 462, 307-314.	5.0	6
141	Structural and magnetic characterization of Zr-substituted magnetite (Zr x Fe 3â^'x O 4 , 0≤ â‰車). Journal of Magnetism and Magnetic Materials, 2016, 401, 559-566.	1.0	32
142	Compositional variability of glauconites within the Upper Cretaceous Karai Shale Formation, Cauvery Basin, India: Implications for evaluation of stratigraphic condensation. Sedimentary Geology, 2016, 331, 12-29.	1.0	82
143	Structural phases and Maxwell–Wagner relaxation in magnetically soft-ZnFe2O4 and hard-Sr2Cu2Fe12O22 nanocomposites. Ceramics International, 2016, 42, 2289-2298.	2.3	20
144	Study of structural and magnetic properties of Li–Ni nanoferrites synthesized by citrate-gel auto combustion method. Ceramics International, 2016, 42, 2941-2950.	2.3	26

#	Article	IF	CITATIONS
145	Fe2-xCoxMnSi (x = 0, 1 and 2) Heusler alloys: Structural, magnetic and atomic site disorder properties. AIP Conference Proceedings, 2015, , .	0.3	1
146	Effect of heat treatment on structural and MÃ \P ssbauer spectroscopic properties of coprecipitated Mn0.5Ni0.5Fe2O4 ferrite nanoparticles. AIP Conference Proceedings, 2015, , .	0.3	1
147	Distinctive compositional characteristics and evolutionary trend of Precambrian glaucony: Example from Bhalukona Formation, Chhattisgarh basin, India. Precambrian Research, 2015, 271, 33-48.	1.2	45
148	Superparamagnetic behavior of indium substituted NiCuZn nano ferrites. Journal of Magnetism and Magnetic Materials, 2015, 381, 416-421.	1.0	20
149	Controlling structural distortion in the geometrically frustrated layered cobaltate YBaCo4O7+Îby Fe substitution and its role on magnetic correlations. Materials Research Express, 2015, 2, 026102.	0.8	4
150	Effect of Fuel on the Synthesis, Structural, and Magnetic Properties of M-Type Hexagonal SrFe12O19 Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2015, 28, 1589-1599.	0.8	49
151	Synthesis and spectral studies of metal complexes of a Schiff base derived from (2-amino-5-chlorophenyl)phenyl methanone. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 151, 598-604.	2.0	5
152	Distribution of cations in Co1 \hat{a} 'xMnxFe2O4 using XRD, magnetization and M \tilde{A} ¶ssbauer spectroscopy. Journal of Alloys and Compounds, 2015, 646, 550-556.	2.8	61
153	Investigation of structural and magnetic properties of co-precipitated Mn–Ni ferrite nanoparticles in the presence of α-Fe2O3 phase. Journal of Magnetism and Magnetic Materials, 2015, 392, 101-106.	1.0	49
154	Manganese ferrite prepared using reverse micelle process: Structural and magnetic properties characterization. Journal of Alloys and Compounds, 2015, 642, 70-77.	2.8	46
155	Random site occupancy induced disordered Néel-type collinear spin alignment in heterovalent Zn ²⁺ –Ti ⁴⁺ ion substituted CoFe ₂ O ₄ . RSC Advances, 2015, 5, 91482-91492.	1.7	62
156	Effect of site preferences on structural and magnetic switching properties of CO–Zr doped strontium hexaferrite SrCo x Zr x Fe (12â^2x) O 19. Journal of Magnetism and Magnetic Materials, 2015, 378, 84-91.	1.0	86
157	Improved magnetic properties of Cr3+ doped SrFe12O19 synthesized via microwave hydrothermal route. Materials Research Bulletin, 2015, 63, 58-66.	2.7	150
158	Effect of Co2+ substitution in Mg0.5Zn0.5 \hat{a} °xCoxFe2O4 ferrite nanoparticles: Study of structural, dielectric and magnetic properties., 2014,,.		0
159	Spectroscopic studies on two mono nuclear iron (III) complexes derived from a schiff base and an azodye., 2014,,.		1
160	Structural and Mössbauer spectroscopic study of Fe-Ni alloy nanoparticles. , 2014, , .		0
161	$ extstyle{ ilde{M}} ilde{ extstyle{A}} extstyle{ ilde{q}} extstyle{ ilde{s}} extstyle{ $		4
162	Crystal structure and magnetic properties of Bi0.8A0.2FeO3 (A = La, Ca, Sr, Ba) multiferroics using neutron diffraction and Mossbauer spectroscopy. AIP Advances, 2014, 4, .	0.6	31

#	Article	IF	CITATIONS
163	Magnetic and dielectric behavior in YMn1â^'xFexO3 (xâ€‰â‰æ€‰0.5). Journal of Applied Physics, 2014, 115, 2	13911.	16
164	A facile gel-combustion route for fine particle synthesis of spinel ferrichromite: X-ray and Mössbauer study on effect of Mg and Ni content. Materials Research Bulletin, 2014, 50, 172-177.	2.7	20
165	Gamma radiation roused lattice contraction effects investigated by Mössbauer spectroscopy in nanoparticle Mn–Zn ferrite. Radiation Physics and Chemistry, 2014, 102, 147-152.	1.4	39
166	Assembled diglycolamide for f-element ions sequestration at high acidity. Reactive and Functional Polymers, 2014, 74, 52-57.	2.0	12
167	Sol–gel synthesis, structural and magnetic properties of nanoscale M-type barium hexaferrites BaCoxZrxFe(12â^2x)O19. Journal of Magnetism and Magnetic Materials, 2014, 350, 23-29.	1.0	157
168	Structural development and magnetic phenomenon in Zn–Cr–Fe multi oxide nano-crystals. Ceramics International, 2014, 40, 8357-8368.	2.3	8
169	Exploring the structural, Mössbauer and dielectric properties of Co2+ incorporated Mg0.5Zn0.5â^'xCoxFe2O4 nanocrystalline ferrite. Journal of Magnetism and Magnetic Materials, 2014, 360, 21-33.	1.0	55
170	Core–Shell Prussian Blue Analogue Molecular Magnet Mn _{1.5} [Cr(CN) ₆]· <i>>m</i> H ₂ 0@Ni _{1.5} [Cr(CN) _{6for Hydrogen Storage. ACS Applied Materials & Interfaces, 2014, 6, 17579-17588.})> }kÂ⊙ xi>n<∤	/i 2ld _{2<}
171	Cations distribution and magnetic properties of Co–Zr doped BaCo x Zr x Fe (12â~'2x) O 19 prepared via citrate precursor sol–gel route. Ceramics International, 2014, 40, 16617-16626.	2.3	55
172	Verwey Transition in Ultrasmall-Sized Octahedral Fe ₃ O ₄ Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 19356-19362.	1.5	159
173	Correlation between site preference and magnetic properties of Co–Zr doped BaCo x Zr x Fe (12 â^2 x) O 19 prepared under sol–gel and citrate precursor sol–gel conditions. Journal of Alloys and Compounds, 2014, 615, 875-881.	2.8	59
174	Synthesis of Fe-Si-B-Mn-based nanocrystalline magnetic alloys with large coercivity by high energy ball milling. Bulletin of Materials Science, 2014, 37, 815-821.	0.8	4
175	Synthesis of Superparamagnetic Nanoparticle Ni0.50Zn0.50Fe2O4 Using Wet Chemical Method. Journal of Superconductivity and Novel Magnetism, 2014, 27, 2829-2833.	0.8	2
176	Study of structural, electrical and magnetic properties of Cr doped Ni–Mg ferrite nanoparticle. Journal of Alloys and Compounds, 2014, 602, 150-156.	2.8	32
177	One-Dimensional Single-Chain Molecular Magnet with a Cross-Linked π–π Coordination Network [{Co ^l (γ)Co ^l (b)}(ox) ₂ (phen) ₂] _{<i>n</i>> sub><i>n</i>> sub><i>n</i>> sub><i>n</i>> sub><i>n</i>> sub><i>n</i>} sub> <i>n</i> sub> <i>n sub><i>n</i> sub><i>n</i> sub><i>n</i> sub><i>n</i> sub><i>n</i> sub><i>n</i> sub><i>n sub><i< td=""><td>1.5</td><td>12</td></i<></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>	1.5	12
178	Multiferroic properties of microwave sintered BaTiO3â€"SrFe12O19 composites. Physica B: Condensed Matter, 2014, 448, 323-326.	1.3	33
179	Hydrogen absorption characteristics and Mössbauer spectroscopic study of Ti0.67Nb0.33â^'xFex (x=0.00,) Tj ET	Qg1 1 0.78	84314 rgB <mark>T</mark>)
180	Synthesis and spectral study of new azo dye and its iron complexes derived from 2-naphthol and 2-amino-3-hydroxypyridine. AIP Conference Proceedings, 2014, , .	0.3	1

#	Article	IF	CITATIONS
181	Synthesis of Low Coercive BaFe12O19 Hexaferrite for Microwave Applications in Low-Temperature Cofired Ceramic. Journal of Electronic Materials, 2013, 42, 761-768.	1.0	65
182	Study of structural and magnetic properties of (Co–Cu)Fe2O4/PANI composites. Materials Chemistry and Physics, 2013, 141, 406-415.	2.0	27
183	Influence of Au addition on magnetic properties of iron oxide in a silica–phosphate glass matrix. Journal of Magnetism and Magnetic Materials, 2013, 345, 24-28.	1.0	14
184	Hydrothermally synthesized oxalate and phenanthroline based ferrimagnetic one-dimensional spin chain molecular magnets $[{Fe(\hat{l}^n)Fe(\hat{l}^n)}]$ $(f(\hat{l}^n))$ $(f(\hat{l}^$	2.7	16
185	Influence of Co2+ distribution and spin–orbit coupling on the resultant magnetic properties of spinel cobalt ferrite nanocrystals. Journal of Alloys and Compounds, 2013, 566, 54-61.	2.8	123
186	Synthesis of nanosize and sintered Mn0.3Ni0.3Zn0.4Fe2O4 ferrite and their structural and dielectric studies. Journal of Alloys and Compounds, 2013, 555, 225-231.	2.8	44
187	Influence of Ni2+ substitution on the structural, dielectric and magnetic properties of Cu–Cd ferrite nanoparticles. Journal of Alloys and Compounds, 2013, 573, 198-204.	2.8	21
188	Structural, dielectric and Mossbauer studies of sol-gel synthesized nano Ni-Cu-Zn ferrites., 2013,,.		0
189	Size dependent magnetic and dielectric properties of nano CoFe2O4 prepared by a salt assisted gel-combustion method. Journal of Applied Physics, 2013, 113, .	1.1	118
190	Investigation of structural, dielectric, magnetic and antibacterial activity of Cu–Cd–Ni–FeO4 nanoparticles. Journal of Magnetism and Magnetic Materials, 2013, 341, 148-157.	1.0	24
191	Evidence for the Existence of Oxygen Clustering and Understanding of Structural Disorder in Prussian Blue Analogues Molecular Magnet $M \le 1.5 < \text{sub} \cdot [Cr(CN) \le 6 < \text{sub} \cdot]\hat{A} \le 1.5 < \text{sub} \cdot 2 < \text{sub} \cdot 2 < \text{sub} \cdot 0 $ Simulation and Neutron Diffraction Study, Journal of Physical Chemistry C, 2013, 117, 2676-2687.	1.5	24
192	Spin reorientation behavior in YMn1 \hat{a} 'xMxO3 (M=Ti, Fe, Ga; x=0, 0.1). Journal of Magnetism and Magnetic Materials, 2013, 348, 120-127.	1.0	28
193	Structural and magnetic properties of BaCo[sub x]Zr[sub x]Fe[sub $(12-2x)$]O[sub 19] prepared by citrate precursor sol-gel route., 2013,,.		0
194	Spectroscopic studies on Fe(II) and Fe(III) complexes of 5-aryl azo substituted IH-pyrimidine-2,4-dione. AIP Conference Proceedings, 2013, , .	0.3	2
195	Synthesis and characterization of Fe (III) complex of an azo dye derived from (2-amino-5-chlorophenyl) phenyl methanone. AIP Conference Proceedings, 2013, , .	0.3	2
196	Magnetic and electric properties of nanoparticles of Ni-substituted ferrites synthesized using a microwave refluxing process. International Journal of Materials Research, 2013, 104, 680-685.	0.1	12
197	Structural and Mossbauer spectroscopic studies of heat-treated Ni[sub x]Zn[sub 1â^x]Fe[sub 2]O[sub 4] ferrite nanoparticles, 2013. Stabilization of the spin density wave structure with rare-earth substitution in Ca <mml:math< td=""><td></td><td>6</td></mml:math<>		6
198	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mrow></mml:mrow><mml:mn>3</mml:mn></mml:msub> Co <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> <mml:msub><mml:mrow></mml:mrow><mml:msub><mml:mrow></mml:mrow><mml:msub></mml:msub></mml:msub></mml:msub> <	1.1	14

12

#	Article	IF	CITATIONS
199	Effect of microwave sintering on structural and magnetic properties of SrFe <inf>12</inf> O <inf>19</inf> nanopowders. , 2013, , .		O
200	Structural and Mol^ssbauer spectroscopic study of cubic phase hydrogen storage alloys Ti[sub 2]Nb[sub $1\hat{a}^*x$]Fe[sub x]., 2013, , .		0
201	Sintering effect on structural and magnetic properties of Ni[sub 0.6]Zn[sub 0.4]Fe[sub 2]O[sub 4] ferrite., 2013,,.		2
202	Mol $$ ssbauer spectroscopic study of heat-treated (Ni0.5Zn0.5)Fe2O4 nanoparticles. AIP Conference Proceedings, 2012, , .	0.3	5
203	Synthesis of nanoparticles Ni0.55Zn0.45Fe2O4 by novel precursor method showing enhanced resistivity. , 2012, , .		0
204	Effect of Co-Zr doping in the M-Type barium hexaferrite BaCoxZrxFe(12-2x)O19: A Mol^ss. AIP Conference Proceedings, 2012, , .	0.3	4
205	Transport and magnetic properties of Fe doped CaMnO3. Journal of Applied Physics, 2012, 112, .	1.1	20
206	Structural refinement and photocatalytic activity of Fe-doped anatase TiO2 nanoparticles. Applied Surface Science, 2012, 263, 536-545.	3.1	108
207	Structural and magnetic properties of glass-ceramics containing silver and iron oxide. Materials Chemistry and Physics, 2012, 133, 144-150.	2.0	44
208	\tilde{MAq} ssbauer, Raman, and Magnetoresistance Study of Aluminum-Based Iron Oxide Thin Films. Journal of Physical Chemistry C, 2011, 115, 3731-3736.	1.5	61
209	Induction heating studies of Fe3O4 magnetic nanoparticles capped with oleic acid and polyethylene glycol for hyperthermia. Journal of Materials Chemistry, 2011, 21, 13388.	6.7	298
210	Catalytic activities of cobalt, nickel and copper ferrospinels for sulfuric acid decomposition: The high temperature step in the sulfur based thermochemical water splitting cycles. International Journal of Hydrogen Energy, 2011, 36, 4768-4780.	3.8	90
211	Modified surface and bulk properties of Fe-substituted lanthanum titanates enhances catalytic activity for CO+N2O reaction. Journal of Molecular Catalysis A, 2011, 335, 158-168.	4.8	36
212	Characterization and Mol^ssbauer Study of Ni[sub 0.45]Zn[sub 0.55]Fe[sub 2]O[sub 4] Nanoparticles Prepared by Novel Precursor Method., 2011,,.		0
213	Preparation and studies on surface modifications of calcium-silico-phosphate ferrimagnetic glass-ceramics in simulated body fluid. Materials Science and Engineering C, 2009, 29, 2226-2233.	3.8	41
214	Preparation and study of magnetic properties of silico phosphate glass and glass-ceramics having iron and zinc oxide. Journal of Magnetism and Magnetic Materials, 2009, 321, 3821-3828.	1.0	63
215	Neutron diffraction study of quasi-one-dimensional spin-chain compounds Ca3Co2–x Fe x O6. Pramana - Journal of Physics, 2008, 71, 923-927.	0.9	1
216	Critical composition of for high CMR. Journal of Magnetism and Magnetic Materials, 2007, 311, 594-604.	1.0	9

#	Article	IF	CITATIONS
217	Structural and magnetic properties of spin chain compoundsCa3Co2â^'xFexO6. Physical Review B, 2006, 74, .	1.1	43
218	Catalytic and redox properties of nano-sized La0.8Sr0.2Mn1â^'xFexO3â^'δ mixed oxides synthesized by different routes. Journal of Molecular Catalysis A, 2006, 246, 128-135.	4.8	32
219	Magnetic Carrier for Radionuclide Removal from Aqueous Wastes: Parameters Investigated in the Development of Nanoscale Magnetite Based Carbamoyl Methyl Phosphine Oxide. Separation Science and Technology, 2006, 41, 925-942.	1.3	7
220	Physical and chemical properties of nanoscale magnetite-based solvent extractant. Journal of Magnetism and Magnetic Materials, 2005, 293, 8-14.	1.0	28
221	Preparation of cellulose-based biocompatible suspension of nano-sized /spl gamma/-Al/sub x/Fe/sub 2-x/O/sub 3/. IEEE Transactions on Magnetics, 2005, 41, 4099-4101.	1.2	11
222	Biocompatible suspension of nanosized γâ€Fe2O3 synthesized by novel methods. Journal of Applied Physics, 2005, 97, 10Q903.	1.1	24
223	Phase separations inLa0.7â^'xDyxCa0.3Mn(Fe)O3. Physical Review B, 2005, 71, .	1.1	22
224	Phase separation in La0.67Ca0.33Mn0.9Fe0.1O3: a Mössbauer study. Journal of Physics Condensed Matter, 2004, 16, 1665-1678.	0.7	5
225	Nano-aggregates of hexacyanoferrate (II)-loaded magnetite for removal of cesium from radioactive wastes. Journal of Magnetism and Magnetic Materials, 2003, 267, 335-340.	1.0	29
226	Spin glass ordering of Zn0.75Co0.25Fe0.5Cr1.5O4 cubic spinel. Solid State Communications, 2003, 126, 535-540.	0.9	4
227	Mössbauer study of KMnFeF6. Solid State Communications, 2000, 116, 575-580.	0.9	8
228	Mössbauer study of superconducting Bi2Sr2Ca2Cu3(1â^'x)Fe3xO10. Solid State Communications, 1999, 109, 311-316.	0.9	2