
VerÃ³nica MartÃ-nez-Miranda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9564318/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acid mine drainage (AMD) treatment using galvanic electrochemical system Al–Cu. Environmental Technology (United Kingdom), 2023, 44, 4424-4440.	1.2	1
2	Photo-electrooxidation treatment of Acetaminophen in aqueous solution using BDD-Fe and BDD-Cu systems. Environmental Technology (United Kingdom), 2022, 43, 1189-1199.	1.2	7
3	Electro-oxidation and solar electro-oxidation of commercial carbamazepine: effect of the support electrolyte. Separation Science and Technology, 2022, 57, 465-483.	1.3	5
4	Defluoridation of drinking water by magnesium and aluminum electrocoagulation in continuous flow-rate: a response surface design. Environmental Technology (United Kingdom), 2022, 43, 3646-3660.	1.2	2
5	Photolysis and heterogeneous solar photo-Fenton for slaughterhouse wastewater treatment using an electrochemically modified zeolite as catalyst. Separation Science and Technology, 2022, 57, 822-841.	1.3	7
6	As and \$\${mathrm{F}}^{-}\$\$ cooccurrence in drinking water: critical review of the international scenario, physicochemical behavior, removal technologies, health effects, and future trends. Environmental Science and Pollution Research, 2022, 29, 38768-38796.	2.7	5
7	Industrial wastewater treatment using magnesium electrocoagulation in batch and continuous mode. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2021, 56, 269-288.	0.9	7
8	Phosphate removal from food industry wastewater by chemical precipitation treatment with biocalcium eggshell. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2021, 56, 549-565.	0.9	10
9	Evaluation and comparison of advanced oxidation processes for the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D): a review. Environmental Science and Pollution Research, 2021, 28, 26325-26358.	2.7	19
10	Tratamiento del diclofenaco en solución acuosa mediante electro-oxidación utilizando electrodos de DDB. Tecnologia Y Ciencias Del Agua, 2021, 12, 335-383.	0.1	2
11	Gestión de los residuos sólidos urbanos y su efecto en el aire, agua y suelo. Revista Alfa, 2021, 5, .	0.1	1
12	Modification of the Relative Abundance of Constituents Dissolved in Drinking Water Caused by Organic Pollution: a Case of the Toluca Valley, Mexico. Water, Air, and Soil Pollution, 2019, 230, 1.	1.1	5
13	Biodegradability index enhancement of landfill leachates using a Solar Galvanic-Fenton and Galvanic-Fenton system coupled to an anaerobic–aerobic bioreactor. Solar Energy, 2019, 188, 989-1001.	2.9	16
14	Synthesis of TiO2 catalysts doped with Cu, Fe, and Fe/Cu supported on clinoptilolite zeolite by an electrochemical-thermal method for the degradation of diclofenac by heterogeneous photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 380, 111834.	2.0	33
15	Removal of inorganic chemical species and organic matter from slaughterhouse wastewater via calcium acetate synthesized from eggshell. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2019, 54, 295-305.	0.9	4
16	Peroxicoagulation and Solar Peroxicoagulation for Landfill Leachate Treatment Using a Cu–Fe System. Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	9
17	Electrooxidation Performance of Aqueous Solution of Nonylphenol Decaethoxylate and Denim Wastewater. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	7
18	Treatment of Indigo-Dyed Textile Wastewater Using Solar Photo-Fenton with Iron-Modified Clay and Copper-Modified Carbon. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	11

#	Article	IF	CITATIONS
19	Removal of fluoride from well water by modified iron oxides in a column system. Desalination and Water Treatment, 2016, 57, 2125-2133.	1.0	9
20	Adsorption-regeneration by heterogeneous Fenton process using modified carbon and clay materials for removal of indigo blue. Environmental Technology (United Kingdom), 2016, 37, 1843-1856.	1.2	18
21	Comparison of Fe–Al-modified natural materials by an electrochemical method and chemical precipitation for the adsorption of F ^Ⲓ and As(V). Environmental Technology (United) Tj ETQq1 1	0.78 4.3 14 rş	gBT1 <i>]</i> :Overlo <mark>ck</mark>
22	Removal Behavior of Cobalt from Aqueous Solutions by a Sodium-Modified Zeolitic Tuff. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	13
23	Competing Effects of Chloride, Nitrate, and Sulfate Ions on the Removal of Fluoride by a Modified Zeolitic Tuff. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	8
24	Behavior of Fluoride Ions in the Presence of Lanthanum and Magnesium Modified Corrosion Products. Separation Science and Technology, 2015, 50, 1461-1468.	1.3	1
25	Behavior of TOC and Color in the Presence of Iron-Modified Activated Carbon in Methyl Methacrylate Wastewater in Batch and Column Systems. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	6
26	Behavior of Fluoride Removal by Aluminum Modified Zeolitic Tuff and Hematite in Column Systems and the Thermodynamic Parameters of the Process. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	11
27	Industrial wastewater treatment by electrocoagulation–electrooxidation processes powered by solar cells. Fuel, 2015, 149, 46-54.	3.4	91
28	Comparison of aluminum modified natural materials in the removal of fluoride ions. Journal of Colloid and Interface Science, 2014, 418, 254-260.	5.0	55
29	Wastewater treatment of methyl methacrylate (MMA) by Fenton's reagent and adsorption. Catalysis Today, 2014, 220-222, 39-48.	2.2	13
30	Chemical oxygen demand, total organic carbon and colour reduction in slaughterhouse wastewater by unmodified and iron-modified clinoptilolite-rich tuff. Environmental Technology (United Kingdom), 2014, 35, 1541-1548.	1.2	3
31	Production of oxidants via electrolysis of carbonate solutions with conductive-diamond anodes. Chemical Engineering Journal, 2013, 230, 272-278.	6.6	59
32	Removal of remazol yellow from aqueous solutions by unmodified and stabilized iron modified clay. Applied Clay Science, 2013, 80-81, 219-225.	2.6	15
33	Improvement of Hexavalent Chromium Reduction Applying Boron Doped Diamond as Cathode Material. ECS Transactions, 2013, 47, 235-244.	0.3	Ο
34	Aluminum and calcium effects on the adsorption of fluoride ions by corrosion products. Journal of Fluorine Chemistry, 2013, 145, 136-140.	0.9	8
35	Aluminum and lanthanum effects in natural materials on the adsorption of fluoride ions. Journal of Fluorine Chemistry, 2013, 148, 6-13.	0.9	47
36	Removal of fluoride ions from drinking water and fluoride solutions by aluminum modified iron oxides in a column system. Journal of Colloid and Interface Science, 2013, 407, 410-415.	5.0	52

#	Article	IF	CITATIONS
37	The corrosive nature of manganese in drinking water. Science of the Total Environment, 2013, 447, 10-16.	3.9	30
38	Azo dyes as electron transfer mediators in the electrochemical reduction of Cr(VI) using boron-doped diamond electrodes. Fuel, 2013, 110, 12-16.	3.4	18
39	Photocatalytically enhanced Cr(VI) removal by mixed oxides derived from MeAl (Me:Mg and/or Zn) layered double hydroxides. Applied Catalysis B: Environmental, 2013, 140-141, 546-551.	10.8	50
40	Boron-Doped Diamond Electrode Performance in Cr(VI) Reduction Using Synthetic and Plating Wastewater. Separation Science and Technology, 2013, 48, 2900-2909.	1.3	6
41	Fluoride Ions Behavior in the Presence of Corrosion Products of Iron: Effects of Other Anions. Separation Science and Technology, 2011, 46, 1443-1449.	1.3	20
42	Cr(VI) Reduction in Aqueous Solution by Electrochemical Process Using Boron Doped Diamond Electrode (BDD). ECS Transactions, 2011, 36, 313-321.	0.3	1
43	Reduction of Cr(VI) from the Electroplating Industry Using an Iron-BDD Electrochemical System. ECS Transactions, 2011, 36, 331-339.	0.3	0
44	Distribution and partitioning of iron, zinc, and arsenic in surface sediments in the Grande River mouth to Cuitzeo Lake, Mexico. Environmental Monitoring and Assessment, 2010, 166, 331-346.	1.3	17
45	Removal of Non-Biodegradable Compounds in a Complex Industrial Wastewater by Electrocoagulation - Activated Sludge Processes. ECS Transactions, 2010, 29, 227-239.	0.3	0
46	Removal of Cadmium By Natural and Surfactant-Modified Mexican Zeolitic Rocks in Fixed Bed Columns. Water, Air, and Soil Pollution, 2009, 196, 199-210.	1.1	12
47	Sorption Behavior of 4-Chlorophenol from Aqueous Solutions By a Surfactant-modified Mexican Zeolitic Rock in Batch and Fixed Bed Systems. Water, Air, and Soil Pollution, 2007, 183, 85-94.	1.1	15
48	Physical, chemical, bacteriological and radioisotopic parameters from springs and wells around Jocotitlan volcano, Mexico. International Journal of Environment and Pollution, 2006, 26, 266.	0.2	6
49	Evaluation of Natural and Surfactant-Modified Zeolites in the Removal of Cadmium from Aqueous Solutions. Separation Science and Technology, 2004, 39, 2711-2730.	1.3	68
50	Determination of 2,4-D in aqueous solution by neutron activation analysis. Journal of Radioanalytical and Nuclear Chemistry, 1999, 241, 323-325.	0.7	1
51	Ethylenediamine effect on Co2+ uptake by zeolite Y. Journal of Radioanalytical and Nuclear Chemistry, 1995, 191, 89-98.	0.7	6