
Juan Reguera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9564255/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Capping pores of alphavirus nsP1 gate membranous viral replication factories. Nature, 2021, 589, 615-619.	27.8	67
2	Structural Insights into the Mechanisms of Action of Functionally Distinct Classes of Chikungunya Virus Nonstructural Protein 1 Inhibitors. Antimicrobial Agents and Chemotherapy, 2021, 65, e0256620.	3.2	9
3	Ty1 integrase is composed of an active N-terminal domain and a large disordered C-terminal module dispensable for its activity inÂvitro. Journal of Biological Chemistry, 2021, 297, 101093.	3.4	4
4	Negative Single-Stranded RNA Viruses (Mononegavirales): A Structural View. , 2021, , 345-351.		0
5	Pre-initiation and elongation structures of full-length La Crosse virus polymerase reveal functionally important conformational changes. Nature Communications, 2020, 11, 3590.	12.8	36
6	Structure and function of the Toscana virus cap-snatching endonuclease. Nucleic Acids Research, 2019, 47, 10914-10930.	14.5	16
7	High resolution cryo-EM structure of the helical RNA-bound Hantaan virus nucleocapsid reveals its assembly mechanisms. ELife, 2019, 8, .	6.0	28
8	Transcription and replication mechanisms of Bunyaviridae and Arenaviridae L proteins. Virus Research, 2017, 234, 118-134.	2.2	86
9	Allosteric inhibition of aminopeptidase N functions related to tumor growth and virus infection. Scientific Reports, 2017, 7, 46045.	3.3	25
10	Structural insights into reptarenavirus cap-snatching machinery. PLoS Pathogens, 2017, 13, e1006400.	4.7	32
11	Towards a structural understanding of RNA synthesis by negative strand RNA viral polymerases. Current Opinion in Structural Biology, 2016, 36, 75-84.	5.7	63
12	Atomic Structure and Biochemical Characterization of an RNA Endonuclease in the N Terminus of Andes Virus L Protein. PLoS Pathogens, 2016, 12, e1005635.	4.7	31
13	Comparative Structural and Functional Analysis of Bunyavirus and Arenavirus Cap-Snatching Endonucleases. PLoS Pathogens, 2016, 12, e1005636.	4.7	84
14	Structural Insights into Bunyavirus Replication and Its Regulation by the vRNA Promoter. Cell, 2015, 161, 1267-1279.	28.9	164
15	A structural view of coronavirus–receptor interactions. Virus Research, 2014, 194, 3-15.	2.2	49
16	Segmented negative strand RNA virus nucleoprotein structure. Current Opinion in Virology, 2014, 5, 7-15.	5.4	35
17	Systems To Establish Bunyavirus Genome Replication in the Absence of Transcription. Journal of Virology, 2013, 87, 8205-8212.	3.4	32
18	Structural basis for encapsidation of genomic RNA by La Crosse Orthobunyavirus nucleoprotein. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7246-7251.	7.1	73

Juan Reguera

#	Article	IF	CITATIONS
19	Structural Bases of Coronavirus Attachment to Host Aminopeptidase N and Its Inhibition by Neutralizing Antibodies. PLoS Pathogens, 2012, 8, e1002859.	4.7	155
20	Antigenic modules in the N-terminal S1 region of the transmissible gastroenteritis virus spike protein. Journal of General Virology, 2011, 92, 1117-1126.	2.9	18
21	Bunyaviridae RNA Polymerases (L-Protein) Have an N-Terminal, Influenza-Like Endonuclease Domain, Essential for Viral Cap-Dependent Transcription. PLoS Pathogens, 2010, 6, e1001101.	4.7	215
22	Biochemical Aspects of Coronavirus Replication. Advances in Experimental Medicine and Biology, 2006, 581, 13-24.	1.6	6
23	Nuclear Transport of Trimeric Assembly Intermediates Exerts a Morphogenetic Control on the Icosahedral Parvovirus Capsid. Journal of Molecular Biology, 2006, 357, 1026-1038.	4.2	57
24	Functional Relevance of Amino Acid Residues Involved in Interactions with Ordered Nucleic Acid in a Spherical Virus. Journal of Biological Chemistry, 2005, 280, 17969-17977.	3.4	28
25	Role of interfacial amino acid residues in assembly, stability, and conformation of a spherical virus capsid. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2724-2729.	7.1	82
26	In Vitro Disassembly of a Parvovirus Capsid and Effect on Capsid Stability of Heterologous Peptide Insertions in Surface Loops. Journal of Biological Chemistry, 2004, 279, 6517-6525.	3.4	62