Gustavo F Trindade

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/956412/publications.pdf

Version: 2024-02-01

50 papers 1,854 citations

623188 14 h-index 42 g-index

55 all docs 55 docs citations

55 times ranked 3374 citing authors

#	Article	IF	CITATIONS
1	Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science, 2018, 360, 1442-1446.	6.0	1,221
2	MultiSIMNRA: A computational tool for self-consistent ion beam analysis using SIMNRA. Nuclear Instruments & Methods in Physics Research B, 2016, 371, 86-89.	0.6	68
3	simsMVA: A tool for multivariate analysis of ToF-SIMS datasets. Chemometrics and Intelligent Laboratory Systems, 2018, 182, 180-187.	1.8	48
4	Protein identification by 3D OrbiSIMS to facilitate in situ imaging and depth profiling. Nature Communications, 2020, 11, 5832.	5.8	40
5	Non-negative matrix factorisation of large mass spectrometry datasets. Chemometrics and Intelligent Laboratory Systems, 2017, 163, 76-85.	1.8	38
6	Compositional study of a corrosion protective layer formed by leachable lithium salts in a coating defect on AA2024-T3 aluminium alloys. Progress in Organic Coatings, 2018, 119, 65-75.	1.9	37
7	A Time-of-Flight Secondary Ion Mass Spectrometry/Multivariate Analysis (ToF-SIMS/MVA) Approach To Identify Phase Segregation in Blends of Incompatible but Extremely Similar Resins. Analytical Chemistry, 2018, 90, 3936-3941.	3.2	33
8	Design of highly stabilized nanocomposite inks based on biodegradable polymer-matrix and gold nanoparticles for Inkjet Printing. Scientific Reports, 2019, 9, 16097.	1.6	32
9	The chemical throwing power of lithium-based inhibitors from organic coatings on AA2024-T3. Corrosion Science, 2019, 150, 194-206.	3.0	27
10	Interâ€Flake Quantum Transport of Electrons and Holes in Inkjetâ€Printed Graphene Devices. Advanced Functional Materials, 2021, 31, 2007478.	7.8	25
11	Development and characterisation of zinc oxalate conversion coatings on zinc. Corrosion Science, 2018, 137, 13-32.	3.0	21
12	Modelling the influence of UV curing strategies for optimisation of inkjet based 3D printing. Materials and Design, 2021, 208, 109889.	3.3	20
13	Elucidating the molecular landscape of the stratum corneum. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2114380119.	3.3	20
14	The influence of printing parameters on multi-material two-photon polymerisation based micro additive manufacturing. Additive Manufacturing, 2022, 51, 102575.	1.7	19
15	Modulating the biological function of protein by tailoring the adsorption orientation on nanoparticles. Journal of Colloid and Interface Science, 2021, 587, 150-161.	5.0	16
16	External-PIXE analysis for the study of pigments from a painting from the Museum of Contemporary Art. Nuclear Instruments & Methods in Physics Research B, 2014, 332, 411-414.	0.6	14
17	Residual polymer stabiliser causes anisotropic electrical conductivity during inkjet printing of metal nanoparticles. Communications Materials, 2021, 2, .	2.9	14
18	Pre-Hispanic ceramics analyzed using PIXE and radiographic techniques. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 3025-3031.	0.6	12

#	Article	IF	CITATIONS
19	A study of the interfacial chemistry between polymeric methylene diphenyl diâ€isocyanate and a Fe–Cr alloy. Surface and Interface Analysis, 2021, 53, 340-349.	0.8	12
20	Introduction to a series of dicarboxylic acids analyzed by x-ray photoelectron spectroscopy. Surface Science Spectra, 2017, 24, .	0.3	11
21	A Reactive Prodrug Ink Formulation Strategy for Inkjet 3D Printing of Controlled Release Dosage Forms and Implants. Advanced Therapeutics, 2020, 3, 1900187.	1.6	11
22	Characterisation of wood growth regions by multivariate analysis of ToFâ€SIMS data. Surface and Interface Analysis, 2016, 48, 584-588.	0.8	9
23	Elemental mapping of large samples by external ion beam analysis with sub-millimeter resolution and its applications. Nuclear Instruments & Methods in Physics Research B, 2018, 422, 68-77.	0.6	9
24	Functionalized Gold Nanoparticles with a Cohesion Enhancer for Robust Flexible Electrodes. ACS Applied Nano Materials, 2022, 5, 6708-6716.	2.4	9
25	Analysis of atmospheric plasmaâ€treated polypropylene by large area <scp>ToFâ€SIMS</scp> imaging and <scp>NMF</scp> . Surface and Interface Analysis, 2018, 50, 1180-1186.	0.8	8
26	Exploiting Generative Design for 3D Printing of Bacterial Biofilm Resistant Composite Devices. Advanced Science, 2021, 8, e2100249.	5.6	7
27	Chemical Imaging of Buried Interfaces in Organic–Inorganic Devices Using Focused Ion Beam-Time-of-Flight-Secondary-Ion Mass Spectrometry. ACS Applied Materials & Samp; Interfaces, 2019, 11, 4500-4506.	4.0	6
28	Bespoke 3D-Printed Polydrug Implants Created via Microstructural Control of Oligomers. ACS Applied Materials & Samp; Interfaces, 2021, 13, 38969-38978.	4.0	6
29	OrbiSIMS metrology Part I: Optimisation of the target potential and collision cell pressure. Surface and Interface Analysis, 2022, 54, 331-340.	0.8	6
30	Molecular Formula Prediction for Chemical Filtering of 3D OrbiSIMS Datasets. Analytical Chemistry, 2022, 94, 4703-4711.	3.2	6
31	Ion beam analysis of a-C:H films on alloy steel substrate. Thin Solid Films, 2013, 545, 171-175.	0.8	5
32	Corrosion Protection of Electrogalvanized Steel by Surface Treatments containing Cerium and Niobium compounds. International Journal of Electrochemical Science, 2016, , 6655-6672.	0.5	5
33	Dicarboxylic acids analysed by x-ray photoelectron spectroscopy, Part II - butanedioic acid anhydrous. Surface Science Spectra, 2017, 24, .	0.3	5
34	Dicarboxylic acids analysed by x-ray photoelectron spectroscopy, Part V - heptanedioic acid anhydrous. Surface Science Spectra, 2017, 24, 011105.	0.3	5
35	Study of boron detection limit using the in-air PIGE set-up at LAMFI-USP. AIP Conference Proceedings, 2014, , .	0.3	4
36	Dicarboxylic acids analysed by x-ray photoelectron spectroscopy, Part IV - hexanedioic acid anhydrous. Surface Science Spectra, 2017, 24, 011104.	0.3	4

3

#	Article	IF	CITATIONS
37	Dicarboxylic acids analysed by x-ray photoelectron spectroscopy, Part VI - octanedioic acid anhydrous. Surface Science Spectra, 2017, 24, 011106.	0.3	4
38	Multivariate analysis applied to particleâ€induced Xâ€ray emission mapping. X-Ray Spectrometry, 2018, 47, 372-381.	0.9	4
39	In-air RBS measurements at the LAMFI external beam setup. AIP Conference Proceedings, 2014, , .	0.3	3
40	Dicarboxylic acids analysed by x-ray photoelectron spectroscopy, Part I - propanedioic acid anhydrous. Surface Science Spectra, 2017, 24, .	0.3	3
41	Dicarboxylic acids analysed by x-ray photoelectron spectroscopy, Part III - pentanedioic acid anhydrous. Surface Science Spectra, 2017, 24, 011103.	0.3	3
42	Surface mass spectrometry as a new approach for the characterisation of coffee. Surface and Interface Analysis, 2018, 50, 1051-1057.	0.8	1
43	Dicarboxylic acids analyzed by time-of-flight secondary ions mass spectrometry. Part II: Butanedioic acid. Surface Science Spectra, 2017, 24, 021403.	0.3	0
44	Dicarboxylic acids analyzed by time-of-flight secondary ion mass spectrometry (Introduction to parts) Tj ETQq0 (O O rgBT /0	Overlock 10 T
45	Dicarboxylic acids analyzed by time-of-flight secondary ion mass spectrometry. Part 0: Ethanedioic acid. Surface Science Spectra, 2017, 24, 021401.	0.3	0
46	Dicarboxylic acids analyzed by time-of-flight secondary ions mass spectrometry. Part I: Propanedioic acid. Surface Science Spectra, 2017, 24, 021402.	0.3	0
47	Dicarboxylic acids analyzed by time-of-flight secondary ions mass spectrometry. Part III: Pentanedioic acid. Surface Science Spectra, 2017, 24, 021404.	0.3	0
48	Dicarboxylic acids analyzed by time-of-flight secondary ions mass spectrometry. Part IV: Hexanedioic acid. Surface Science Spectra, 2017, 24, 021405.	0.3	0
49	Dicarboxylic acids analyzed by time-of-flight secondary ions mass spectrometry. Part V: Heptanedioic acid. Surface Science Spectra, 2017, 24, 021406.	0.3	0
50	Dicarboxylic acids analyzed by time-of-flight secondary ions mass spectrometry. Part VI: Oxanedioic acid. Surface Science Spectra, 2017, 24, 021407.	0.3	0