Mateja ManÄek-Keber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9563798/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Half is enough: Oxidized lysophospholipids as novel bioactive molecules. Free Radical Biology and Medicine, 2022, 188, 351-362.	2.9	4
2	A Nanoscaffolded Spike-RBD Vaccine Provides Protection against SARS-CoV-2 with Minimal Anti-Scaffold Response. Vaccines, 2021, 9, 431.	4.4	18
3	Coiled-coil heterodimers with increased stability for cellular regulation and sensing SARS-CoV-2 spike protein-mediated cell fusion. Scientific Reports, 2021, 11, 9136.	3.3	19
4	Disruption of disulfides within RBD of SARS oVâ€2 spike protein prevents fusion and represents a target for viral entry inhibition by registered drugs. FASEB Journal, 2021, 35, e21651.	0.5	44
5	Cleavage-Mediated Regulation of Myd88 Signaling by Inflammasome-Activated Caspase-1. Frontiers in Immunology, 2021, 12, 790258.	4.8	3
6	Calcium Ionophore-Induced Extracellular Vesicles Mediate Cytoprotection against Simulated Ischemia/Reperfusion Injury in Cardiomyocyte-Derived Cell Lines by Inducing Heme Oxygenase 1. International Journal of Molecular Sciences, 2020, 21, 7687.	4.1	7
7	Synergy between 15-lipoxygenase and secreted PLA2promotes inflammation by formation of TLR4 agonists from extracellular vesicles. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25679-25689.	7.1	15
8	Adamantane Containing Peptidoglycan Fragments Enhance RANTES and IL-6 Production in Lipopolysaccharide-Induced Macrophages. Molecules, 2020, 25, 3707.	3.8	5
9	Targeted Delivery of Adamantylated Peptidoglycan Immunomodulators in Lipid Nanocarriers: NMR Shows That Cargo Fragments Are Available on the Surface. Journal of Physical Chemistry B, 2020, 124, 4132-4145.	2.6	7
10	Extracellular vesicle–mediated transfer of constitutively active MyD88L265P engages MyD88wt and activates signaling. Blood, 2018, 131, 1720-1729.	1.4	36
11	Isolation of High-Purity Extracellular Vesicles by the Combination of Iodixanol Density Gradient Ultracentrifugation and Bind-Elute Chromatography From Blood Plasma. Frontiers in Physiology, 2018, 9, 1479.	2.8	153
12	Delivery of an Artificial Transcription Regulator dCas9-VPR by Extracellular Vesicles for Therapeutic Gene Activation. ACS Synthetic Biology, 2018, 7, 2715-2725.	3.8	43
13	Activation of cell membrane-localized Toll-like receptor 3 by siRNA. Immunology Letters, 2017, 189, 55-63.	2.5	18
14	Locked and proteolysis-based transcription activator-like effector (TALE) regulation. Nucleic Acids Research, 2016, 44, 1471-1481.	14.5	17
15	Biological properties of extracellular vesicles and their physiological functions. Journal of Extracellular Vesicles, 2015, 4, 27066.	12.2	3,973
16	Toll-like receptor 4 senses oxidative stress mediated by the oxidation of phospholipids in extracellular vesicles. Science Signaling, 2015, 8, ra60.	3.6	74
17	Postulates for validating TLR4 agonists. European Journal of Immunology, 2015, 45, 356-370.	2.9	38
18	The Ectodomain of TLR3 Receptor Is Required for Its Plasma Membrane Translocation. PLoS ONE, 2014, 9, e92391.	2.5	19

Mateja ManÄek-Keber

#	Article	IF	CITATIONS
19	A Role for Stefin B (Cystatin B) in Inflammation and Endotoxemia. Journal of Biological Chemistry, 2014, 289, 31736-31750.	3.4	64
20	Vanadate from Air Pollutant Inhibits Hrs-Dependent Endosome Fusion and Augments Responsiveness to Toll-Like Receptors. PLoS ONE, 2014, 9, e99287.	2.5	6
21	Inflammation-Mediating Proteases: Structure, Function in (Patho) Physiology and Inhibition. Protein and Peptide Letters, 2014, 21, 1209-1229.	0.9	14
22	Inflammation-mediating proteases: structure, function in (patho) physiology and inhibition. Protein and Peptide Letters, 2014, 21, 1209-29.	0.9	12
23	MARCKS as a Negative Regulator of Lipopolysaccharide Signaling. Journal of Immunology, 2012, 188, 3893-3902.	0.8	22
24	Free Thiol Group of MD-2 as the Target for Inhibition of the Lipopolysaccharide-induced Cell Activation. Journal of Biological Chemistry, 2009, 284, 19493-19500.	3.4	42
25	Structural similarity between the hydrophobic fluorescent probe and lipid A as a ligand of MDâ€2. FASEB Journal, 2006, 20, 1836-1842.	0.5	43
26	MD-2 and Der p 2 – a tale of two cousins or distant relatives?. Journal of Endotoxin Research, 2005, 11, 186-192.	2.5	34