
Roberto Fernandez-Lafuente

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9563725/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 2007, 40, 1451-1463.	3.2	2,864
2	Modifying enzyme activity and selectivity by immobilization. Chemical Society Reviews, 2013, 42, 6290-6307.	38.1	1,552
3	Potential of Different Enzyme Immobilization Strategies to Improve Enzyme Performance. Advanced Synthesis and Catalysis, 2011, 353, 2885-2904.	4.3	1,389
4	Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Advances, 2014, 4, 1583-1600.	3.6	669
5	Strategies for the one-step immobilization–purification of enzymes as industrial biocatalysts. Biotechnology Advances, 2015, 33, 435-456.	11.7	568
6	Stabilization of multimeric enzymes: Strategies to prevent subunit dissociation. Enzyme and Microbial Technology, 2009, 45, 405-418.	3.2	561
7	Control of protein immobilization: Coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance. Enzyme and Microbial Technology, 2011, 48, 107-122.	3.2	541
8	Lipase from Thermomyces lanuginosus: Uses and prospects as an industrial biocatalyst. Journal of Molecular Catalysis B: Enzymatic, 2010, 62, 197-212.	1.8	495
9	A single step purification, immobilization, and hyperactivation of lipases via interfacial adsorption on strongly hydrophobic supports. Biotechnology and Bioengineering, 1998, 58, 486-493.	3.3	469
10	Importance of the Support Properties for Immobilization or Purification of Enzymes. ChemCatChem, 2015, 7, 2413-2432.	3.7	466
11	Immobilization of lipases by selective adsorption on hydrophobic supports. Chemistry and Physics of Lipids, 1998, 93, 185-197.	3.2	441
12	Heterofunctional Supports in Enzyme Immobilization: From Traditional Immobilization Protocols to Opportunities in Tuning Enzyme Properties. Biomacromolecules, 2013, 14, 2433-2462.	5.4	429
13	Immobilization of lipases on hydrophobic supports involves the open form of the enzyme. Enzyme and Microbial Technology, 2015, 71, 53-57.	3.2	429
14	Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions. Biotechnology Advances, 2019, 37, 746-770.	11.7	409
15	Novozym 435: the "perfect―lipase immobilized biocatalyst?. Catalysis Science and Technology, 2019, 9, 2380-2420.	4.1	393
16	Interfacial adsorption of lipases on very hydrophobic support (octadecyl–Sepabeads): immobilization, hyperactivation and stabilization of the open form of lipases. Journal of Molecular Catalysis B: Enzymatic, 2002, 19-20, 279-286.	1.8	384
17	Different mechanisms of protein immobilization on glutaraldehyde activated supports: Effect of support activation and immobilization conditions. Enzyme and Microbial Technology, 2006, 39, 877-882.	3.2	361
18	Glyoxyl agarose: A fully inert and hydrophilic support for immobilization and high stabilization of proteins. Enzyme and Microbial Technology, 2006, 39, 274-280.	3.2	347

#	Article	IF	CITATIONS
19	Coupling Chemical Modification and Immobilization to Improve the Catalytic Performance of Enzymes. Advanced Synthesis and Catalysis, 2011, 353, 2216-2238.	4.3	329
20	Parameters necessary to define an immobilized enzyme preparation. Process Biochemistry, 2020, 90, 66-80.	3.7	306
21	Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization. Enzyme and Microbial Technology, 2011, 49, 326-346.	3.2	295
22	Multifunctional Epoxy Supports:Â A New Tool To Improve the Covalent Immobilization of Proteins. The Promotion of Physical Adsorptions of Proteins on the Supports before Their Covalent Linkage. Biomacromolecules, 2000, 1, 739-745.	5.4	281
23	Stabilization of enzymes via immobilization: Multipoint covalent attachment and other stabilization strategies. Biotechnology Advances, 2021, 52, 107821.	11.7	280
24	Immobilization of enzymes on heterofunctional epoxy supports. Nature Protocols, 2007, 2, 1022-1033.	12.0	269
25	Nanomaterials for biocatalyst immobilization – state of the art and future trends. RSC Advances, 2016, 6, 104675-104692.	3.6	267
26	Epoxy Sepabeads: A Novel Epoxy Support for Stabilization of Industrial Enzymes via Very Intense Multipoint Covalent Attachment. Biotechnology Progress, 2002, 18, 629-634.	2.6	259
27	Enzyme stabilization by glutaraldehyde crosslinking of adsorbed proteins on aminated supports. Journal of Biotechnology, 2005, 119, 70-75.	3.8	259
28	Some special features of glyoxyl supports to immobilize proteins. Enzyme and Microbial Technology, 2005, 37, 456-462.	3.2	257
29	Lipase from Rhizomucor miehei as an industrial biocatalyst in chemical process. Journal of Molecular Catalysis B: Enzymatic, 2010, 64, 1-22.	1.8	241
30	Preparation of activated supports containing low pK amino groups. A new tool for protein immobilization via the carboxyl coupling method. Enzyme and Microbial Technology, 1993, 15, 546-550.	3.2	240
31	Epoxy-Amino Groups:Â A New Tool for Improved Immobilization of Proteins by the Epoxy Method. Biomacromolecules, 2003, 4, 772-777.	5.4	234
32	Polyethylenimine: a very useful ionic polymer in the design of immobilized enzyme biocatalysts. Journal of Materials Chemistry B, 2017, 5, 7461-7490.	5.8	228
33	Agarose and Its Derivatives as Supports for Enzyme Immobilization. Molecules, 2016, 21, 1577.	3.8	227
34	Reversible enzyme immobilization via a very strong and nondistorting ionic adsorption on support-polyethylenimine composites. , 2000, 68, 98-105.		225
35	Lipase from Rhizomucor miehei as a biocatalyst in fats and oils modification. Journal of Molecular Catalysis B: Enzymatic, 2010, 66, 15-32.	1.8	225
36	General Trend of Lipase to Self-Assemble Giving Bimolecular Aggregates Greatly Modifies the Enzyme Functionality. Biomacromolecules, 2003, 4, 1-6.	5.4	212

#	Article	IF	CITATIONS
37	Effect of the support and experimental conditions in the intensity of the multipoint covalent attachment of proteins on glyoxyl-agarose supports: Correlation between enzyme–support linkages and thermal stability. Enzyme and Microbial Technology, 2007, 40, 1160-1166.	3.2	200
38	Activation of Bacterial Thermoalkalophilic Lipases Is Spurred by Dramatic Structural Rearrangements. Journal of Biological Chemistry, 2009, 284, 4365-4372.	3.4	196
39	Interfacially activated lipases against hydrophobic supports: Effect of the support nature on the biocatalytic properties. Process Biochemistry, 2008, 43, 1061-1067.	3.7	191
40	Advances in the design of new epoxy supports for enzyme immobilization–stabilization. Biochemical Society Transactions, 2007, 35, 1593-1601.	3.4	188
41	Versatility of glutaraldehyde to immobilize lipases: Effect of the immobilization protocol on the properties of lipase B from Candida antarctica. Process Biochemistry, 2012, 47, 1220-1227.	3.7	188
42	Chemical Modification in the Design of Immobilized Enzyme Biocatalysts: Drawbacks and Opportunities. Chemical Record, 2016, 16, 1436-1455.	5.8	183
43	Biotechnological Applications of Proteases in Food Technology. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 412-436.	11.7	183
44	Is enzyme immobilization a mature discipline? Some critical considerations to capitalize on the benefits of immobilization. Chemical Society Reviews, 2022, 51, 6251-6290.	38.1	183
45	Chitosan crosslinked with genipin as support matrix for application in food process: Support characterization and β-d-galactosidase immobilization. Carbohydrate Polymers, 2016, 137, 184-190.	10.2	181
46	Effect of protein load on stability of immobilized enzymes. Enzyme and Microbial Technology, 2017, 98, 18-25.	3.2	176
47	Modulation of the enantioselectivity of lipases via controlled immobilization and medium engineering: hydrolytic resolution of mandelic acid esters. Enzyme and Microbial Technology, 2002, 31, 775-783.	3.2	160
48	Use of Alcalase in the production of bioactive peptides: A review. International Journal of Biological Macromolecules, 2020, 165, 2143-2196.	7.5	160
49	Novozym 435 displays very different selectivity compared to lipase from Candida antarctica B adsorbed on other hydrophobic supports. Journal of Molecular Catalysis B: Enzymatic, 2009, 57, 171-176.	1.8	159
50	Enzyme co-immobilization: Always the biocatalyst designers' choice…or not?. Biotechnology Advances, 2021, 51, 107584.	11.7	152
51	Antimicrobial Peptides: Promising Compounds Against Pathogenic Microorganisms. Current Medicinal Chemistry, 2014, 21, 2299-2321.	2.4	146
52	Strategies for enzyme stabilization by intramolecular crosslinking with bifunctional reagents. Enzyme and Microbial Technology, 1995, 17, 517-523.	3.2	145
53	Immobilization-stabilization of Penicillin G acylase fromEscherichia coli. Applied Biochemistry and Biotechnology, 1990, 26, 181-195.	2.9	141
54	Enzymatic reactors for biodiesel synthesis: Present status and future prospects. Biotechnology Advances, 2015, 33, 511-525.	11.7	141

#	Article	IF	CITATIONS
55	Inactivation of immobilized trypsin under dissimilar conditions produces trypsin molecules with different structures. RSC Advances, 2016, 6, 27329-27334.	3.6	139
56	The coimmobilization of d-amino acid oxidase and catalase enables the quantitative transformation of d-amino acids (d-phenylalanine) into α-keto acids (phenylpyruvic acid). Enzyme and Microbial Technology, 1998, 23, 28-33.	3.2	137
57	Hydrogen Peroxide in Biocatalysis. A Dangerous Liaison. Current Organic Chemistry, 2012, 16, 2652-2672.	1.6	133
58	Effect of the Support Size on the Properties of \hat{l}^2 -Galactosidase Immobilized on Chitosan: Advantages and Disadvantages of Macro and Nanoparticles. Biomacromolecules, 2012, 13, 2456-2464.	5.4	131
59	Encapsulation of crosslinked penicillin G acylase aggregates in lentikats: Evaluation of a novel biocatalyst in organic media. Biotechnology and Bioengineering, 2004, 86, 558-562.	3.3	130
60	Improved performance of lipases immobilized on heterofunctional octyl-glyoxyl agarose beads. RSC Advances, 2015, 5, 11212-11222.	3.6	129
61	Modulation of the enantioselectivity of Candida antarctica B lipase via conformational engineering. Kinetic resolution of (±)-α-hydroxy-phenylacetic acid derivatives. Tetrahedron: Asymmetry, 2002, 13, 1337-1345.	1.8	124
62	Use of immobilized lipases for lipase purification via specific lipase–lipase interactions. Journal of Chromatography A, 2004, 1038, 267-273.	3.7	121
63	Glutaraldehyde Cross-Linking of Lipases Adsorbed on Aminated Supports in the Presence of Detergents Leads to Improved Performance. Biomacromolecules, 2006, 7, 2610-2615.	5.4	121
64	Co-Aggregation of Penicillin G Acylase and Polyionic Polymers:Â An Easy Methodology To Prepare Enzyme Biocatalysts Stable in Organic Media. Biomacromolecules, 2004, 5, 852-857.	5.4	120
65	Stabilization of multimeric enzymes via immobilization and post-immobilization techniques. Journal of Molecular Catalysis B: Enzymatic, 1999, 7, 181-189.	1.8	119
66	Self-assembly ofPseudomonas fluorescenslipase into bimolecular aggregates dramatically affects functional properties. Biotechnology and Bioengineering, 2003, 82, 232-237.	3.3	119
67	Evaluation of different lipase biocatalysts in the production of biodiesel from used cooking oil: Critical role of the immobilization support. Fuel, 2017, 200, 1-10.	6.4	118
68	Amination of enzymes to improve biocatalyst performance: coupling genetic modification and physicochemical tools. RSC Advances, 2014, 4, 38350-38374.	3.6	117
69	Effect of immobilization rate and enzyme crowding on enzyme stability under different conditions. The case of lipase from Thermomyces lanuginosus immobilized on octyl agarose beads. Process Biochemistry, 2017, 56, 117-123.	3.7	115
70	Improved stabilization of chemically aminated enzymes via multipoint covalent attachment on glyoxyl supports. Journal of Biotechnology, 2005, 116, 1-10.	3.8	114
71	CLEAs of lipases and poly-ionic polymers: A simple way of preparing stable biocatalysts with improved properties. Enzyme and Microbial Technology, 2006, 39, 750-755.	3.2	114
72	Simple and efficient immobilization of lipase B from Candida antarctica on porous styrene–divinylbenzene beads. Enzyme and Microbial Technology, 2011, 49, 72-78.	3.2	113

#	Article	IF	CITATIONS
73	Improved production of biolubricants from soybean oil and different polyols via esterification reaction catalyzed by immobilized lipase from Candida rugosa. Fuel, 2018, 215, 705-713.	6.4	113
74	Stabilization of Penicillin G Acylase from Escherichia coli : Site-Directed Mutagenesis of the Protein Surface To Increase Multipoint Covalent Attachment. Applied and Environmental Microbiology, 2004, 70, 1249-1251.	3.1	111
75	Coating of Soluble and Immobilized Enzymes with Ionic Polymers: Full Stabilization of the Quaternary Structure of Multimeric Enzymes. Biomacromolecules, 2009, 10, 742-747.	5.4	111
76	The immobilization of a thermophilic β-galactosidase on Sepabeads supports decreases product inhibition. Enzyme and Microbial Technology, 2003, 33, 199-205.	3.2	110
77	Lipase–lipase interactions as a new tool to immobilize and modulate the lipase properties. Enzyme and Microbial Technology, 2005, 36, 447-454.	3.2	110
78	Specificity enhancement towards hydrophobic substrates by immobilization of lipases by interfacial activation on hydrophobic supports. Enzyme and Microbial Technology, 2007, 41, 565-569.	3.2	109
79	Use of Enzymes in the Production of Semi-Synthetic Penicillins and Cephalosporins: Drawbacks and Perspectives. Current Medicinal Chemistry, 2010, 17, 3855-3873.	2.4	109
80	Dextran aldehyde coating of glucose oxidase immobilized on magnetic nanoparticles prevents its inactivation by gas bubbles. Journal of Molecular Catalysis B: Enzymatic, 2005, 32, 97-101.	1.8	106
81	Relevance of substrates and products on the desorption of lipases physically adsorbed on hydrophobic supports. Enzyme and Microbial Technology, 2017, 96, 30-35.	3.2	106
82	Ultrasound-assisted butyl acetate synthesis catalyzed by Novozym 435: Enhanced activity and operational stability. Ultrasonics Sonochemistry, 2013, 20, 1155-1160.	8.2	105
83	Characterization of supports activated with divinyl sulfone as a tool to immobilize and stabilize enzymes via multipoint covalent attachment. Application to chymotrypsin. RSC Advances, 2015, 5, 20639-20649.	3.6	104
84	Kinetic resolution of drug intermediates catalyzed by lipase B from <i>Candida antarctica</i> i>immobilized on immobeadâ€350. Biotechnology Progress, 2018, 34, 878-889.	2.6	104
85	One-step purification, covalent immobilization, and additional stabilization of poly-His-tagged proteins using novel heterofunctional chelate-epoxy supports. Biotechnology and Bioengineering, 2001, 76, 269-276.	3.3	103
86	Chitosan activated with divinyl sulfone: a new heterofunctional support for enzyme immobilization. Application in the immobilization of lipase B from Candida antarctica. International Journal of Biological Macromolecules, 2019, 130, 798-809.	7.5	103
87	Effects of the combined use of Thermomyces lanuginosus and Rhizomucor miehei lipases for the transesterification and hydrolysis of soybean oil. Process Biochemistry, 2011, 46, 682-688.	3.7	102
88	The combined use of ultrasound and molecular sieves improves the synthesis of ethyl butyrate catalyzed by immobilized Thermomyces lanuginosus lipase. Ultrasonics Sonochemistry, 2015, 22, 89-94.	8.2	102
89	Solid-Phase Chemical Amination of a Lipase from Bacillus thermocatenulatus To Improve Its Stabilization via Covalent Immobilization on Highly Activated Glyoxyl-Agarose. Biomacromolecules, 2008, 9, 2553-2561.	5.4	98
90	Modulation of penicillin acylase properties via immobilization techniques: one-pot chemoenzymatic synthesis of cephamandole from cephalosporin C. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 2429-2432.	2.2	97

#	Article	IF	CITATIONS
91	Facile synthesis of artificial enzyme nano-environments via solid-phase chemistry of immobilized derivatives: Dramatic stabilization of penicillin acylase versus organic solvents. Enzyme and Microbial Technology, 1999, 24, 96-103.	3.2	96
92	Solid-Phase Handling of Hydrophobins:Â Immobilized Hydrophobins as a New Tool To Study Lipases. Biomacromolecules, 2003, 4, 204-210.	5.4	96
93	Co-aggregation of Enzymes and Polyethyleneimine:Â A Simple Method To Prepare Stable and Immobilized Derivatives of Glutaryl Acylase. Biomacromolecules, 2005, 6, 1839-1842.	5.4	96
94	Cross-Linked Aggregates of Multimeric Enzymes:Â A Simple and Efficient Methodology To Stabilize Their Quaternary Structure. Biomacromolecules, 2004, 5, 814-817.	5.4	95
95	Modulation of lipase properties in macro-aqueous systems by controlled enzyme immobilization: enantioselective hydrolysis of a chiral ester by immobilized Pseudomonas lipase. Enzyme and Microbial Technology, 2001, 28, 389-396.	3.2	94
96	Improved production of butyl butyrate with lipase from Thermomyces lanuginosus immobilized on styrene–divinylbenzene beads. Bioresource Technology, 2013, 134, 417-422.	9.6	94
97	Effect of chemical modification of Novozym 435 on its performance in the alcoholysis of camelina oil. Biochemical Engineering Journal, 2016, 111, 75-86.	3.6	94
98	Comparison of acid, basic and enzymatic catalysis on the production of biodiesel after RSM optimization. Renewable Energy, 2019, 135, 1-9.	8.9	94
99	Structural and Functional Stabilization of L-Asparaginase via Multisubunit Immobilization onto Highly Activated Supports. Biotechnology Progress, 2001, 17, 537-542.	2.6	93
100	Bovine trypsin immobilization on agarose activated with divinylsulfone: Improved activity and stability via multipoint covalent attachment. Journal of Molecular Catalysis B: Enzymatic, 2015, 117, 38-44.	1.8	93
101	Development of simple protocols to solve the problems of enzyme coimmobilization. Application to coimmobilize a lipase and a β-galactosidase. RSC Advances, 2016, 6, 61707-61715.	3.6	93
102	Evaluation of divinylsulfone activated agarose to immobilize lipases and to tune their catalytic properties. Process Biochemistry, 2015, 50, 918-927.	3.7	91
103	Immobilization of lactase from Kluyveromyces lactis greatly reduces the inhibition promoted by glucose. full hydrolysis of lactose in milk. Biotechnology Progress, 2004, 20, 1259-1262.	2.6	90
104	Stabilization of enzymes by multipoint immobilization of thiolated proteins on new epoxy-thiol supports. Biotechnology and Bioengineering, 2005, 90, 597-605.	3.3	90
105	High stability of immobilized β-d-galactosidase for lactose hydrolysis and galactooligosaccharides synthesis. Carbohydrate Polymers, 2013, 95, 465-470.	10.2	90
106	Modulation of Mucor miehei lipase properties via directed immobilization on different hetero-functional epoxy resins. Journal of Molecular Catalysis B: Enzymatic, 2003, 21, 201-210.	1.8	88
107	Easy stabilization of interfacially activated lipases using heterofunctional divinyl sulfone activated-octyl agarose beads. Modulation of the immobilized enzymes by altering their nanoenvironment. Process Biochemistry, 2016, 51, 865-874.	3.7	88
108	Comparison of the immobilization of lipase from Pseudomonas fluorescens on divinylsulfone or p-benzoquinone activated support. International Journal of Biological Macromolecules, 2019, 134, 936-945.	7.5	88

#	Article	IF	CITATIONS
109	Liquid lipase preparations designed for industrial production of biodiesel. Is it really an optimal solution?. Renewable Energy, 2021, 164, 1566-1587.	8.9	88
110	Preparation of a Stable Biocatalyst of Bovine Liver Catalase Using Immobilization and Postimmobilization Techniques. Biotechnology Progress, 2003, 19, 763-767.	2.6	87
111	Preparation of inert magnetic nano-particles for the directed immobilization of antibodies. Biosensors and Bioelectronics, 2005, 20, 1380-1387.	10.1	86
112	Improvement of the stability of alcohol dehydrogenase by covalent immobilization on glyoxyl-agarose. Journal of Biotechnology, 2006, 125, 85-94.	3.8	86
113	Immobilization of Lipase A from Candida antarctica onto Chitosan-Coated Magnetic Nanoparticles. International Journal of Molecular Sciences, 2019, 20, 4018.	4.1	86
114	Enzyme reaction engineering: Synthesis of antibiotics catalysed by stabilized penicillin G acylase in the presence of organic cosolvents. Enzyme and Microbial Technology, 1991, 13, 898-905.	3.2	84
115	Novel Bifunctional Epoxy/Thiol-Reactive Support to Immobilize Thiol Containing Proteins by the Epoxy Chemistry. Biomacromolecules, 2003, 4, 1495-1501.	5.4	84
116	Immobilization of lipases via interfacial activation on hydrophobic supports: Production of biocatalysts libraries by altering the immobilization conditions. Catalysis Today, 2021, 362, 130-140.	4.4	83
117	Reversible and strong immobilization of proteins by ionic exchange on supports coated with sulfate-dextran. Biotechnology Progress, 2004, 20, 1134-1139.	2.6	82
118	Improved catalytic properties of immobilized lipases by the presence of very low concentrations of detergents in the reaction medium. Biotechnology and Bioengineering, 2007, 97, 242-250.	3.3	81
119	Accurel MP 1000 as a support for the immobilization of lipase from Burkholderia cepacia : Application to the kinetic resolution of myo -inositol derivatives. Process Biochemistry, 2015, 50, 1557-1564.	3.7	81
120	Reversible immobilization of a thermophilic β-galactosidase via ionic adsorption on PEI-coated Sepabeads. Enzyme and Microbial Technology, 2003, 32, 369-374.	3.2	80
121	Enzyme production of <scp>d</scp> -gluconic acid and glucose oxidase: successful tales of cascade reactions. Catalysis Science and Technology, 2020, 10, 5740-5771.	4.1	80
122	Use of aqueous two-phase systems for in situ extraction of water soluble antibiotics during their synthesis by enzymes immobilized on porous supports. , 1998, 59, 73-79.		79
123	Stabilizing effects of cations on lipases depend on the immobilization protocol. RSC Advances, 2015, 5, 83868-83875.	3.6	79
124	Design of a lipase-nano particle biocatalysts and its use in the kinetic resolution of medicament precursors. Biochemical Engineering Journal, 2017, 125, 104-115.	3.6	79
125	One-Step Purification, Covalent Immobilization, and Additional Stabilization of a Thermophilic Poly-His-Tagged Î ² -Galactosidase fromThermussp. Strain T2 by using Novel Heterofunctional Chelateâ ^{^•} Epoxy Sepabeads. Biomacromolecules, 2003, 4, 107-113.	5.4	78
126	Preparation of a very stable immobilized biocatalyst of glucose oxidase from Aspergillus niger. Journal of Biotechnology, 2006, 121, 284-289.	3.8	78

#	Article	IF	CITATIONS
127	Biotechnological relevance of the lipase A from Candida antarctica. Catalysis Today, 2021, 362, 141-154.	4.4	78
128	A Novel Heterofunctional Epoxy-Amino Sepabeads for a New Enzyme Immobilization Protocol: Immobilization-Stabilization of I²-Galactosidase from Aspergillus oryzae. Biotechnology Progress, 2003, 19, 1056-1060.	2.6	77
129	Combi-lipase for heterogeneous substrates: a new approach for hydrolysis of soybean oil using mixtures of biocatalysts. RSC Advances, 2014, 4, 6863-6868.	3.6	77
130	Stabilization of dimeric β-glucosidase from Aspergillu s nige r via glutaraldehyde immobilization under different conditions. Enzyme and Microbial Technology, 2018, 110, 38-45.	3.2	77
131	Effects of Enzyme Loading and Immobilization Conditions on the Catalytic Features of Lipase From Pseudomonas fluorescens Immobilized on Octyl-Agarose Beads. Frontiers in Bioengineering and Biotechnology, 2020, 8, 36.	4.1	77
132	Biotransformations Catalyzed by Multimeric Enzymes:Â Stabilization of Tetrameric Ampicillin Acylase Permits the Optimization of Ampicillin Synthesis under Dissociation Conditions. Biomacromolecules, 2001, 2, 95-104.	5.4	76
133	Design of a core–shell support to improve lipase features by immobilization. RSC Advances, 2016, 6, 62814-62824.	3.6	76
134	Affinity chromatography of polyhistidine tagged enzymes. Journal of Chromatography A, 2001, 915, 97-106.	3.7	75
135	Reversible Immobilization of Invertase on Sepabeads Coated with Polyethyleneimine: Optimization of the Biocatalyst's Stability. Biotechnology Progress, 2002, 18, 1221-1226.	2.6	75
136	Stabilization of a Formate Dehydrogenase by Covalent Immobilization on Highly Activated Glyoxyl-Agarose Supports. Biomacromolecules, 2006, 7, 669-673.	5.4	75
137	Improvement of the functional properties of a thermostable lipase from alcaligenes sp. via strong adsorption on hydrophobic supports. Enzyme and Microbial Technology, 2006, 38, 975-980.	3.2	75
138	Preparation of core–shell polymer supports to immobilize lipase B from Candida antarctica. Journal of Molecular Catalysis B: Enzymatic, 2014, 100, 59-67.	1.8	75
139	Tuning the catalytic properties of lipases immobilized on divinylsulfone activated agarose by altering its nanoenvironment. Enzyme and Microbial Technology, 2015, 77, 1-7.	3.2	75
140	Optimization of ethyl ester production from olive and palm oils using mixtures of immobilized lipases. Applied Catalysis A: General, 2015, 490, 50-56.	4.3	75
141	Operational stabilities of different chemical derivatives of Novozym 435 in an alcoholysis reaction. Enzyme and Microbial Technology, 2016, 90, 35-44.	3.2	75
142	Use of dextrans as long and hydrophilic spacer arms to improve the performance of immobilized proteins acting on macromolecules. , 1998, 60, 518-523.		74
143	The presence of methanol exerts a strong and complex modulation of the synthesis of different antibiotics by immobilized penicillin G acylase. Enzyme and Microbial Technology, 1998, 23, 305-310.	3.2	74
144	Ultrasound technology and molecular sieves improve the thermodynamically controlled esterification of butyric acid mediated by immobilized lipase from Rhizomucor miehei. RSC Advances, 2014, 4, 8675.	3.6	74

#	Article	IF	CITATIONS
145	Enzymatic esterification of palm fatty-acid distillate for the production of polyol esters with biolubricant properties. Industrial Crops and Products, 2018, 116, 90-96.	5.2	74
146	Stabilization of heterodimeric enzyme by multipoint covalent immobilization: Penicillin G acylase fromKluyvera citrophila. Biotechnology and Bioengineering, 1993, 42, 455-464.	3.3	73
147	Immobilization of lipases on glyoxyl–octyl supports: Improved stability and reactivation strategies. Process Biochemistry, 2015, 50, 1211-1217.	3.7	73
148	Evaluation of different commercial hydrophobic supports for the immobilization of lipases: tuning their stability, activity and specificity. RSC Advances, 2016, 6, 100281-100294.	3.6	73
149	New applications of glyoxyl-octyl agarose in lipases co-immobilization: Strategies to reuse the most stable lipase. International Journal of Biological Macromolecules, 2019, 131, 989-997.	7.5	73
150	Optimized preparation of CALB-CLEAs by response surface methodology: The necessity to employ a feeder to have an effective crosslinking. Journal of Molecular Catalysis B: Enzymatic, 2012, 80, 7-14.	1.8	72
151	Fructooligosaccharides synthesis by highly stable immobilized β-fructofuranosidase from Aspergillus aculeatus. Carbohydrate Polymers, 2014, 103, 193-197.	10.2	72
152	Immobilization of CALB on activated chitosan: Application to enzymatic synthesis in supercritical and near-critical carbon dioxide. Biotechnology Reports (Amsterdam, Netherlands), 2017, 14, 16-26.	4.4	72
153	Solvent-free esterifications mediated by immobilized lipases: a review from thermodynamic and kinetic perspectives. Catalysis Science and Technology, 2021, 11, 5696-5711.	4.1	72
154	Immobilization and stabilization of different β-glucosidases using the glutaraldehyde chemistry: Optimal protocol depends on the enzyme. International Journal of Biological Macromolecules, 2019, 129, 672-678.	7.5	71
155	lon exchange using poorly activated supports, an easy way for purification of large proteins. Journal of Chromatography A, 2004, 1034, 155-159.	3.7	70
156	Two step ethanolysis: A simple and efficient way to improve the enzymatic biodiesel synthesis catalyzed by an immobilized–stabilized lipase from Thermomyces lanuginosus. Process Biochemistry, 2010, 45, 1268-1273.	3.7	70
157	Stabilizing hyperactivated lecitase structures through physical treatment with ionic polymers. Process Biochemistry, 2014, 49, 1511-1515.	3.7	70
158	Versatility of divinylsulfone supports permits the tuning of CALB properties during its immobilization. RSC Advances, 2015, 5, 35801-35810.	3.6	70
159	Reversible immobilization of lipases on octyl-glutamic agarose beads: A mixed adsorption that reinforces enzyme immobilization. Journal of Molecular Catalysis B: Enzymatic, 2016, 128, 10-18.	1.8	70
160	Evaluation of different enzymes as catalysts for the production of β-lactam antibiotics following a kinetically controlled strategy. Enzyme and Microbial Technology, 1999, 25, 336-343.	3.2	69
161	Determination of protein-protein interactions through aldehyde-dextran intermolecular cross-linking. Proteomics, 2004, 4, 2602-2607.	2.2	69
162	Preparation of a robust biocatalyst of d-amino acid oxidase on sepabeads supports using the glutaraldehyde crosslinking method. Enzyme and Microbial Technology, 2005, 37, 750-756.	3.2	69

#	Article	IF	CITATIONS
163	Evaluation of different immobilized lipases in transesterification reactions using tributyrin: Advantages of the heterofunctional octyl agarose beads. Journal of Molecular Catalysis B: Enzymatic, 2016, 133, 117-123.	1.8	69
164	Immobilization/Stabilization of Ficin Extract on Glutaraldehyde-Activated Agarose Beads. Variables That Control the Final Stability and Activity in Protein Hydrolyses. Catalysts, 2018, 8, 149.	3.5	69
165	Synthesis of antibiotics (cephaloglycin) catalyzed by penicillin G acylase: Evaluation and optimization of different synthetic approaches. Enzyme and Microbial Technology, 1996, 19, 9-14.	3.2	68
166	Prevention of interfacial inactivation of enzymes by coating the enzyme surface with dextran-aldehyde. Journal of Biotechnology, 2004, 110, 201-207.	3.8	68
167	Purification, Immobilization, and Stabilization of a Lipase from Bacillus thermocatenulatus by Interfacial Adsorption on Hydrophobic Supports. Biotechnology Progress, 2008, 20, 630-635.	2.6	68
168	Chemical amination of lipases improves their immobilization on octyl-glyoxyl agarose beads. Catalysis Today, 2016, 259, 107-118.	4.4	68
169	Hydrolysis of Proteins by Immobilized-Stabilized Alcalase-Glyoxyl Agarose. Biotechnology Progress, 2003, 19, 352-360.	2.6	67
170	New Trends in the Recycling of NAD(P)H for the Design of Sustainable Asymmetric Reductions Catalyzed by Dehydrogenases. Current Organic Chemistry, 2010, 14, 1000-1021.	1.6	67
171	Improved immobilization and stabilization of lipase from Rhizomucor miehei on octyl-glyoxyl agarose beads by using CaCl2. Process Biochemistry, 2016, 51, 48-52.	3.7	67
172	Production and characterization of biodiesel from oil of fish waste by enzymatic catalysis. Renewable Energy, 2020, 153, 1346-1354.	8.9	67
173	Modulation of Immobilized Lipase Enantioselectivityvia Chemical Amination. Advanced Synthesis and Catalysis, 2007, 349, 1119-1127.	4.3	66
174	Stabilization of different alcohol oxidases via immobilization and post immobilization techniques. Enzyme and Microbial Technology, 2007, 40, 278-284.	3.2	66
175	Immobilization of lipase B from <i>Candida antarctica</i> on porous styrene–divinylbenzene beads improves butyl acetate synthesis. Biotechnology Progress, 2012, 28, 406-412.	2.6	66
176	Modulation of the properties of immobilized CALB by chemical modification with 2,3,4-trinitrobenzenesulfonate or ethylendiamine. Advantages of using adsorbed lipases on hydrophobic supports. Process Biochemistry, 2012, 47, 867-876.	3.7	66
177	Selective adsorption of poly-His tagged glutaryl acylase on tailor-made metal chelate supports. Journal of Chromatography A, 1999, 848, 61-70.	3.7	65
178	Detecting minimal traces of DNA using DNA covalently attached to superparamagnetic nanoparticles and direct PCR-ELISA. Biosensors and Bioelectronics, 2006, 21, 1574-1580.	10.1	65
179	Evaluation of different immobilization strategies to prepare an industrial biocatalyst of formate dehydrogenase from Candida boidinii. Enzyme and Microbial Technology, 2007, 40, 540-546.	3.2	65
180	Tuning of Lecitase features via solid-phase chemical modification: Effect of the immobilization protocol. Process Biochemistry, 2014, 49, 604-616.	3.7	65

#	Article	IF	CITATIONS
181	Bioprocess development for biolubricant production using microbial oil derived via fermentation from confectionery industry wastes. Bioresource Technology, 2018, 267, 311-318.	9.6	65
182	Effect of lipase–lipase interactions in the activity, stability and specificity of a lipase from Alcaligenes sp Enzyme and Microbial Technology, 2006, 39, 259-264.	3.2	64
183	High operational stability of invertase from Saccharomyces cerevisiae immobilized on chitosan nanoparticles. Carbohydrate Polymers, 2013, 92, 462-468.	10.2	64
184	The Protagonism of Biocatalysis in Green Chemistry and Its Environmental Benefits. Catalysts, 2017, 7, 9.	3.5	64
185	Use of Physicochemical Tools to Determine the Choice of Optimal Enzyme: Stabilization of -Amino Acid Oxidase. Biotechnology Progress, 2003, 19, 784-788.	2.6	63
186	Synthesis of enantiomerically pure glycidol via a fully enantioselective lipase-catalyzed resolution. Tetrahedron: Asymmetry, 2005, 16, 869-874.	1.8	63
187	Effect of immobilization protocol on optimal conditions of ethyl butyrate synthesis catalyzed by lipase B from <i>Candida antarctica</i> . Journal of Chemical Technology and Biotechnology, 2013, 88, 1089-1095.	3.2	63
188	Cashew apple bagasse as a support for the immobilization of lipase B from Candida antarctica: Application to the chemoenzymatic production of (R)-Indanol. Journal of Molecular Catalysis B: Enzymatic, 2016, 130, 58-69.	1.8	63
189	Physical crosslinking of lipase from Rhizomucor miehei immobilized on octyl agarose via coating with ionic polymers. Process Biochemistry, 2017, 54, 81-88.	3.7	63
190	Improved stability of immobilized lipases via modification with polyethylenimine and glutaraldehyde. Enzyme and Microbial Technology, 2017, 106, 67-74.	3.2	63
191	Synthesis of Benzyl Acetate Catalyzed by Lipase Immobilized in Nontoxic Chitosan-Polyphosphate Beads. Molecules, 2017, 22, 2165.	3.8	63
192	Transesterification of Waste Frying Oil and Soybean Oil by Combi-lipases Under Ultrasound-Assisted Reactions. Applied Biochemistry and Biotechnology, 2018, 186, 576-589.	2.9	63
193	Pectin lyase immobilization using the glutaraldehyde chemistry increases the enzyme operation range. Enzyme and Microbial Technology, 2020, 132, 109397.	3.2	63
194	Preparation of artificial hyper-hydrophilic micro-environments (polymeric salts) surrounding enzyme molecules. Journal of Molecular Catalysis B: Enzymatic, 2002, 19-20, 295-303.	1.8	62
195	The slow-down of the CALB immobilization rate permits to control the inter and intra molecular modification produced by glutaraldehyde. Process Biochemistry, 2012, 47, 766-774.	3.7	62
196	Evaluation of Styrene-Divinylbenzene Beads as a Support to Immobilize Lipases. Molecules, 2014, 19, 7629-7645.	3.8	62
197	Immobilization of Proteins in Poly-Styrene-Divinylbenzene Matrices: Functional Properties and Applications. Current Organic Chemistry, 2015, 19, 1707-1718.	1.6	62
198	Preparation of new lipases derivatives with high activity–stability in anhydrous media: adsorption on hydrophobic supports plus hydrophilization with polyethylenimine. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 817-824.	1.8	61

#	Article	IF	CITATIONS
199	Regio-selective deprotection of peracetylated sugars via lipase hydrolysis. Tetrahedron, 2003, 59, 5705-5711.	1.9	61
200	Improving the catalytic properties of immobilized Lecitase via physical coating with ionic polymers. Enzyme and Microbial Technology, 2014, 60, 1-8.	3.2	61
201	Hyperstabilization of a thermophilic esterase by multipoint covalent attachment. Enzyme and Microbial Technology, 1995, 17, 366-372.	3.2	59
202	Influence of the enzyme derivative preparation and substrate structure on the enantioselectivity of penicillin G acylase. Enzyme and Microbial Technology, 2002, 31, 88-93.	3.2	59
203	Immobilization and stabilization of glutaryl acylase on aminated sepabeads supports by the glutaraldehyde crosslinking method. Journal of Molecular Catalysis B: Enzymatic, 2005, 35, 57-61.	1.8	59
204	Effect of the immobilization protocol on the properties of lipase B from Candida antarctica in organic media: Enantiospecifc production of atenolol acetate. Journal of Molecular Catalysis B: Enzymatic, 2011, 71, 124-132.	1.8	59
205	Stabilization of enzymes (d-amino acid oxidase) against hydrogen peroxide via immobilization and post-immobilization techniques. Journal of Molecular Catalysis B: Enzymatic, 1999, 7, 173-179.	1.8	58
206	Comparison of the performance of commercial immobilized lipases in the synthesis of different flavor esters. Journal of Molecular Catalysis B: Enzymatic, 2014, 105, 18-25.	1.8	58
207	Reversible Immobilization of Lipases on Heterofunctional Octyl-Amino Agarose Beads Prevents Enzyme Desorption. Molecules, 2016, 21, 646.	3.8	58
208	Ethyl Butyrate Synthesis Catalyzed by Lipases A and B from Candida antarctica Immobilized onto Magnetic Nanoparticles. Improvement of Biocatalysts' Performance under Ultrasonic Irradiation. International Journal of Molecular Sciences, 2019, 20, 5807.	4.1	58
209	Production of lipases in cottonseed meal and application of the fermented solid as biocatalyst in esterification and transesterification reactions. Renewable Energy, 2019, 130, 574-581.	8.9	57
210	Glyoxyl agarose as a new chromatographic matrix. Enzyme and Microbial Technology, 2006, 38, 960-966.	3.2	56
211	Hydrolysis of triacetin catalyzed by immobilized lipases: Effect of the immobilization protocol and experimental conditions on diacetin yield. Enzyme and Microbial Technology, 2011, 48, 510-517.	3.2	56
212	Influence of the raw material on the final properties of biodiesel produced using lipase from Rhizomucor miehei grown on babassu cake as biocatalyst of esterification reactions. Renewable Energy, 2017, 113, 112-118.	8.9	56
213	Further stabilization of lipase from Pseudomonas fluorescens immobilized on octyl coated nanoparticles via chemical modification with bifunctional agents. International Journal of Biological Macromolecules, 2019, 141, 313-324.	7.5	56
214	A criterion for the selection of monophasic solvents for enzymatic synthesis. Enzyme and Microbial Technology, 1998, 23, 64-69.	3.2	55
215	Meta-pathway degradation of phenolics by thermophilic Bacilli. Enzyme and Microbial Technology, 1998, 23, 462-468.	3.2	55
216	Glutaraldehyde modification of lipases adsorbed on aminated supports: A simple way to improve their behaviour as enantioselective biocatalyst. Enzyme and Microbial Technology, 2007, 40, 704-707.	3.2	55

#	Article	IF	CITATIONS
217	Chemical amination of lipase B from Candida antarctica is an efficient solution for the preparation of crosslinked enzyme aggregates. Process Biochemistry, 2012, 47, 2373-2378.	3.7	55
218	Preparation and characterization of a Combi-CLEAs from pectinases and cellulases: a potential biocatalyst for grape juice clarification. RSC Advances, 2016, 6, 27242-27251.	3.6	55
219	Magnetic biocatalysts of pectinase and cellulase: Synthesis and characterization of two preparations for application in grape juice clarification. International Journal of Biological Macromolecules, 2018, 115, 35-44.	7.5	55
220	Genipin as An Emergent Tool in the Design of Biocatalysts: Mechanism of Reaction and Applications. Catalysts, 2019, 9, 1035.	3.5	55
221	One Pot Use of Combilipases for Full Modification of Oils and Fats: Multifunctional and Heterogeneous Substrates. Catalysts, 2020, 10, 605.	3.5	55
222	Additional stabilization of penicillin G acylase-agarose derivatives by controlled chemical modification with formaldehyde. Enzyme and Microbial Technology, 1992, 14, 489-495.	3.2	54
223	One-Pot Chemoenzymatic Synthesis of 3â€~-Functionalized Cephalosporines (Cefazolin) by Three Consecutive Biotransformations in Fully Aqueous Medium. Journal of Organic Chemistry, 1997, 62, 9099-9106.	3.2	54
224	Electrostatic and covalent immobilisation of enzymes on ITQ-6 delaminated zeolitic materials. Chemical Communications, 2001, , 419-420.	4.1	54
225	Immobilization and Stabilization of Recombinant Multimeric Uridine and Purine Nucleoside Phosphorylases fromBacillus subtilis. Biomacromolecules, 2004, 5, 2195-2200.	5.4	54
226	Improvement of the enantioselectivity of lipase (fraction B) from Candida antarctica via adsorpiton on polyethylenimine-agarose under different experimental conditions. Enzyme and Microbial Technology, 2006, 39, 167-171.	3.2	54
227	Stabilization of ficin extract by immobilization on glyoxyl agarose. Preliminary characterization of the biocatalyst performance in hydrolysis of proteins. Process Biochemistry, 2017, 58, 98-104.	3.7	54
228	Different strategies to immobilize lipase from Geotrichum candidum : Kinetic and thermodynamic studies. Process Biochemistry, 2018, 67, 55-63.	3.7	54
229	Synthesis of 2′-Deoxynucleosides by Transglycosylation with New Immobilized and Stabilized Uridine Phosphorylase and Purine Nucleoside Phosphorylase. Advanced Synthesis and Catalysis, 2004, 346, 1361-1366.	4.3	53
230	Purification and stabilization of a glutamate dehygrogenase from Thermus thermophilus via oriented multisubunit plus multipoint covalent immobilization. Journal of Molecular Catalysis B: Enzymatic, 2009, 58, 158-163.	1.8	53
231	Optimization of the immobilization of sweet potato amylase using glutaraldehyde-agarose support. Characterization of the immobilized enzyme. Process Biochemistry, 2013, 48, 1054-1058.	3.7	53
232	Continuous production of β-cyclodextrin from starch by highly stable cyclodextrin glycosyltransferase immobilized on chitosan. Carbohydrate Polymers, 2013, 98, 1311-1316.	10.2	53
233	Enzymatic production and characterization of potential biolubricants from castor bean biodiesel. Journal of Molecular Catalysis B: Enzymatic, 2015, 122, 323-329.	1.8	53
234	A new bioprocess for the production of prebiotic lactosucrose by an immobilized β-galactosidase. Process Biochemistry, 2017, 55, 96-103.	3.7	53

#	Article	IF	CITATIONS
235	Exploiting the Versatility of Aminated Supports Activated with Glutaraldehyde to Immobilize β-galactosidase from Aspergillus oryzae. Catalysts, 2017, 7, 250.	3.5	53
236	One-Pot Conversion of Cephalosporin C to 7-Aminocephalosporanic Acid in the Absence of Hydrogen Peroxide. Advanced Synthesis and Catalysis, 2005, 347, 1804-1810.	4.3	52
237	Lipase B from Candida antarctica immobilized on octadecyl Sepabeads: A very stable biocatalyst in the presence of hydrogen peroxide. Process Biochemistry, 2011, 46, 873-878.	3.7	52
238	Optimization of synthesis of fatty acid methyl esters catalyzed by lipase B from Candida antarctica immobilized on hydrophobic supports. Journal of Molecular Catalysis B: Enzymatic, 2013, 94, 51-56.	1.8	52
239	Ion exchange of β-galactosidase: The effect of the immobilization pH on enzyme stability. Process Biochemistry, 2016, 51, 875-880.	3.7	52
240	Advantages of the Pre-Immobilization of Enzymes on Porous Supports for Their Entrapment in Solâ~'Gels. Biomacromolecules, 2005, 6, 1027-1030.	5.4	51
241	Enhancement of Novozym-435 catalytic properties by physical or chemical modification. Process Biochemistry, 2009, 44, 226-231.	3.7	51
242	Two-step enzymatic production of environmentally friendly biolubricants using castor oil: Enzyme selection and product characterization. Fuel, 2017, 202, 196-205.	6.4	51
243	Improvement of pectinase, xylanase and cellulase activities by ultrasound: Effects on enzymes and substrates, kinetics and thermodynamic parameters. Process Biochemistry, 2017, 61, 80-87.	3.7	51
244	Improved immobilization of lipase from Thermomyces lanuginosus on a new chitosan-based heterofunctional support: Mixed ion exchange plus hydrophobic interactions. International Journal of Biological Macromolecules, 2020, 163, 550-561.	7.5	51
245	Design of an immobilized preparation of catalase from Thermus thermophilus to be used in a wide range of conditions Enzyme and Microbial Technology, 2003, 33, 278-285.	3.2	50
246	Design of New Immobilized-Stabilized Carboxypeptidase A Derivative for Production of Aromatic Free Hydrolysates of Proteins. Biotechnology Progress, 2003, 19, 565-574.	2.6	50
247	Covalent Immobilization of Antibodies on Finally Inert Support Surfaces through their Surface Regions Having the Highest Densities in Carboxyl Groups. Biomacromolecules, 2008, 9, 2230-2236.	5.4	50
248	Reuse of anion exchangers as supports for enzyme immobilization: Reinforcement of the enzyme-support multiinteraction after enzyme inactivation. Process Biochemistry, 2016, 51, 1391-1396.	3.7	50
249	Effect of high salt concentrations on the stability of immobilized lipases: Dramatic deleterious effects of phosphate anions. Process Biochemistry, 2017, 62, 128-134.	3.7	50
250	Ficin: A protease extract with relevance in biotechnology and biocatalysis. International Journal of Biological Macromolecules, 2020, 162, 394-404.	7.5	50
251	Biocatalyst engineering exerts a dramatic effect on selectivity of hydrolysis catalyzed by immobilized lipases in aqueous medium. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 649-656.	1.8	49
252	Characterization of the catalytic properties of lipases from plant seeds for the production of concentrated fatty acids from different vegetable oils. Industrial Crops and Products, 2013, 49, 462-470.	5.2	49

#	Article	IF	CITATIONS
253	Synthesis of butyl butyrate in batch and continuous enzymatic reactors using Thermomyces lanuginosus lipase immobilized in Immobead 150. Journal of Molecular Catalysis B: Enzymatic, 2016, 127, 67-75.	1.8	49
254	Desorption of Lipases Immobilized on Octyl-Agarose Beads and Coated with Ionic Polymers after Thermal Inactivation. Stronger Adsorption of Polymers/Unfolded Protein Composites. Molecules, 2017, 22, 91.	3.8	49
255	Immobilization of Eversa Lipase on Octyl Agarose Beads and Preliminary Characterization of Stability and Activity Features. Catalysts, 2018, 8, 511.	3.5	49
256	Improved features of a highly stable protease from Penaeus vannamei by immobilization on glutaraldehyde activated graphene oxide nanosheets. International Journal of Biological Macromolecules, 2019, 130, 564-572.	7.5	49
257	Modulating the properties of the lipase from Thermomyces lanuginosus immobilized on octyl agarose beads by altering the immobilization conditions. Enzyme and Microbial Technology, 2020, 133, 109461.	3.2	49
258	Selective oxidation: stabilisation by multipoint attachment of ferredoxin NADP+ reductase, an interesting cofactor recycling enzyme. Journal of Molecular Catalysis A, 1995, 98, 161-169.	4.8	48
259	Optimization of an industrial biocatalyst of glutaryl acylase: Stabilization of the enzyme by multipoint covalent attachment onto new amino-epoxy Sepabeads. Journal of Biotechnology, 2004, 111, 219-227.	3.8	48
260	Purification of different lipases fromAspergillus niger by using a highly selective adsorption on hydrophobic supports. Biotechnology and Bioengineering, 2005, 92, 773-779.	3.3	48
261	Purification and very strong reversible immobilization of large proteins on anionic exchangers by controlling the support and the immobilization conditions. Enzyme and Microbial Technology, 2006, 39, 909-915.	3.2	48
262	Immobilization and stabilization of an endoxylanase from Bacillus subtilis (XynA) for xylooligosaccharides (XOs) production. Catalysis Today, 2016, 259, 130-139.	4.4	48
263	Reversible immobilization of glucoamylase by ionic adsorption on sepabeads coated with polyethyleneimine. Biotechnology Progress, 2004, 20, 1297-1300.	2.6	47
264	Stabilization of Candida antarctica Lipase B (CALB) Immobilized on Octyl Agarose by Treatment with Polyethyleneimine (PEI). Molecules, 2016, 21, 751.	3.8	47
265	Immobilization of Glycoside Hydrolase Families GH1, GH13, and GH70: State of the Art and Perspectives. Molecules, 2016, 21, 1074.	3.8	47
266	Coimmobilization of enzymes in bilayers using pei as a glue to reuse the most stable enzyme: Preventing pei release during inactivated enzyme desorption. Process Biochemistry, 2017, 61, 95-101.	3.7	47
267	Bioactive peptides from fisheries residues: A review of use of papain in proteolysis reactions. International Journal of Biological Macromolecules, 2021, 184, 415-428.	7.5	47
268	Thermus thermophilus as a Cell Factory for the Production of a Thermophilic Mn-Dependent Catalase Which Fails To Be Synthesized in an Active Form in Escherichia coli. Applied and Environmental Microbiology, 2004, 70, 3839-3844.	3.1	46
269	Chemical Modification of Protein Surfaces To Improve Their Reversible Enzyme Immobilization on Ionic Exchangers. Biomacromolecules, 2006, 7, 3052-3058.	5.4	46
270	Crosslinked Penicillin Acylase Aggregates for Synthesis of β-Lactam Antibiotics in Organic Medium. Applied Biochemistry and Biotechnology, 2006, 133, 189-202.	2.9	46

#	Article	IF	CITATIONS
271	The presence of thiolated compounds allows the immobilization of enzymes on glyoxyl agarose at mild pH values: New strategies of stabilization by multipoint covalent attachment. Enzyme and Microbial Technology, 2009, 45, 477-483.	3.2	46
272	Regioselective Hydrolysis of Different Peracetylated βâ€Monosaccharides by Immobilized Lipases from Different Sources. Key Role of The Immobilization. Advanced Synthesis and Catalysis, 2007, 349, 1969-1976.	4.3	45
273	Stabilization of the hexameric glutamate dehydrogenase from Escherichia coli by cations and polyethyleneimine. Enzyme and Microbial Technology, 2013, 52, 211-217.	3.2	45
274	Continuous production of fructooligosaccharides and invert sugar by chitosan immobilized enzymes: Comparison between in fluidized and packed bed reactors. Journal of Molecular Catalysis B: Enzymatic, 2015, 111, 51-55.	1.8	45
275	Evaluation of Strategies to Produce Highly Porous Cross-Linked Aggregates of Porcine Pancreas Lipase with Magnetic Properties. Molecules, 2018, 23, 2993.	3.8	45
276	Enzymatic synthesis of neopentyl glycol-bases biolubricants using biodiesel from soybean and castor bean as raw materials. Renewable Energy, 2020, 148, 689-696.	8.9	45
277	Lipase immobilization via cross-linked enzyme aggregates: Problems and prospects – A review. International Journal of Biological Macromolecules, 2022, 215, 434-449.	7.5	45
278	Stabilization of Immobilized Enzymes Against Water-Soluble Organic Cosolvents and Generation of Hyper-Hydrophilic Micro-Environments Surrounding Enzyme Molecules. Biocatalysis and Biotransformation, 2001, 19, 489-503.	2.0	44
279	Stabilization of a Multimeric Î ² -Galactosidase from Thermus sp. Strain T2 by Immobilization on Novel Heterofunctional Epoxy Supports Plus Aldehyde-Dextran Cross-Linking. Biotechnology Progress, 2008, 20, 388-392.	2.6	44
280	Advantages of Heterofunctional Octyl Supports: Production of 1,2-Dibutyrin by Specific and Selective Hydrolysis of Tributyrin Catalyzed by Immobilized Lipases. ChemistrySelect, 2016, 1, 3259-3270.	1.5	44
281	Immobilization on octylâ€agarose beads and some catalytic features of commercial preparations of lipase a from <i>Candida antarctica</i> (Novocor ADL): Comparison with immobilized lipase B from <i>Candida antarctica</i> . Biotechnology Progress, 2019, 35, e2735.	2.6	44
282	Immobilization of functionally unstable catechol-2,3-dioxygenase greatly improves operational stability. Enzyme and Microbial Technology, 2000, 26, 568-573.	3.2	43
283	Enzymatic resolution of (±)-glycidyl butyrate in aqueous media. Strong modulation of the properties of the lipase from Rhizopus oryzae via immobilization techniques. Tetrahedron: Asymmetry, 2004, 15, 1157-1161.	1.8	43
284	Lecitase® ultra as regioselective biocatalyst in the hydrolysis of fully protected carbohydrates. Journal of Molecular Catalysis B: Enzymatic, 2008, 51, 110-117.	1.8	43
285	Reactivation of lipases by the unfolding and refolding of covalently immobilized biocatalysts. RSC Advances, 2015, 5, 55588-55594.	3.6	43
286	Immobilization of lipase from Pseudomonas fluorescens on glyoxyl-octyl-agarose beads: Improved stability and reusability. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 741-747.	2.3	43
287	Lecitase ultra: A phospholipase with great potential in biocatalysis. Molecular Catalysis, 2019, 473, 110405.	2.0	43
288	Equilibrium controlled synthesis of cephalothin in water-cosolvent systems by stabilized penicillin G acylase. Applied Biochemistry and Biotechnology, 1991, 27, 277-290.	2.9	42

#	Article	IF	CITATIONS
289	Enzymatic production of (3S,4R)-(â^')-4-(4′-fluorophenyl)-6-oxo-piperidin-3-carboxylic acid using a commercial preparation from Candida antarctica A: the role of a contaminant esterase. Tetrahedron: Asymmetry, 2002, 13, 2653-2659.	1.8	42
290	Effect of the immobilization protocol in the activity, stability, and enantioslectivity of Lecitase® Ultra. Journal of Molecular Catalysis B: Enzymatic, 2007, 47, 99-104.	1.8	42
291	Immobilization–stabilization of a new recombinant glutamate dehydrogenase from Thermus thermophilus. Applied Microbiology and Biotechnology, 2008, 80, 49-58.	3.6	42
292	Combined Effects of Ultrasound and Immobilization Protocol on Butyl Acetate Synthesis Catalyzed by CALB. Molecules, 2014, 19, 9562-9576.	3.8	42
293	Magnetic micro-macro biocatalysts applied to industrial bioprocesses. Bioresource Technology, 2021, 322, 124547.	9.6	42
294	Immobilization of papain: A review. International Journal of Biological Macromolecules, 2021, 188, 94-113.	7.5	42
295	Dynamic reaction design of enzymic biotransformations in organic media: equilibrium-controlled synthesis of antibiotics by penicillin G acylase. Biotechnology and Applied Biochemistry, 1996, 24, 139-43.	3.1	42
296	Enzymatic resolution of (±)-trans-4-(4′-fluorophenyl)-6-oxo-piperidin-3-ethyl carboxylate, an intermediate in the synthesis of (â^')-Paroxetine. Tetrahedron: Asymmetry, 2002, 13, 2375-2381.	1.8	41
297	Genetic Modification of the Penicillin G Acylase Surface To Improve Its Reversible Immobilization on Ionic Exchangers. Applied and Environmental Microbiology, 2007, 73, 312-319.	3.1	41
298	Immobilization of Yarrowia lipolytica Lipase—a Comparison of Stability of Physical Adsorption and Covalent Attachment Techniques. Applied Biochemistry and Biotechnology, 2008, 146, 49-56.	2.9	41
299	Optimized immobilization of polygalacturonase from Aspergillus niger following different protocols: Improved stability and activity under drastic conditions. International Journal of Biological Macromolecules, 2019, 138, 234-243.	7.5	41
300	Influence of reaction parameters in the polymerization between genipin and chitosan for enzyme immobilization. Process Biochemistry, 2019, 84, 73-80.	3.7	41
301	Eco-friendly production of trimethylolpropane triesters from refined and used soybean cooking oils using an immobilized low-cost lipase (Eversa>® Transform 2.0) as heterogeneous catalyst. Biomass and Bioenergy, 2021, 155, 106302.	5.7	41
302	†Interfacial affinity chromatography' of lipases: separation of different fractions by selective adsorption on supports activated with hydrophobic groups. BBA - Proteins and Proteomics, 1998, 1388, 337-348.	2.1	40
303	Mixed Ion Exchange Supports as Useful Ion Exchangers for Protein Purification:Â Purification of Penicillin G Acylase fromEscherichia coli. Biomacromolecules, 2007, 8, 703-707.	5.4	40
304	The co-operative effect of physical and covalent protein adsorption on heterofunctional supports. Process Biochemistry, 2009, 44, 757-763.	3.7	40
305	Identification of Bioactive Compounds From Vitis labrusca L. Variety Concord Grape Juice Treated With Commercial Enzymes: Improved Yield and Quality Parameters. Food and Bioprocess Technology, 2016, 9, 365-377.	4.7	40
306	Optimization of the coating of octyl-CALB with ionic polymers to improve stability and decrease enzyme leakage. Biocatalysis and Biotransformation, 2018, 36, 47-56.	2.0	40

#	Article	IF	CITATIONS
307	Enzymatic transformations. Immobilized A. niger epoxide hydrolase as a novel biocatalytic tool for repeated-batch hydrolytic kinetic resolution of epoxidesPart 54. For part 53 see ref. 21 Organic and Biomolecular Chemistry, 2003, 1, 2739.	2.8	39
308	Modulation of the catalytic properties of multimeric β-galactosidase from E. coli by using different immobilization protocols. Enzyme and Microbial Technology, 2007, 40, 310-315.	3.2	39
309	The adsorption of multimeric enzymes on very lowly activated supports involves more enzyme subunits: Stabilization of a glutamate dehydrogenase from Thermus thermophilus by immobilization on heterofunctional supports. Enzyme and Microbial Technology, 2009, 44, 139-144.	3.2	39
310	Immobilization of β-galactosidase in glutaraldehyde-chitosan and its application to the synthesis of lactulose using cheese whey as feedstock. Process Biochemistry, 2018, 73, 65-73.	3.7	39
311	Increasing the Enzyme Loading Capacity of Porous Supports by a Layer-by-Layer Immobilization Strategy Using PEI as Glue. Catalysts, 2019, 9, 576.	3.5	39
312	Reuse of Lipase from Pseudomonas fluorescens via Its Step-by-Step Coimmobilization on Glyoxyl-Octyl Agarose Beads with Least Stable Lipases. Catalysts, 2019, 9, 487.	3.5	39
313	β-Galactosidase from Kluyveromyces lactis: Characterization, production, immobilization and applications - A review. International Journal of Biological Macromolecules, 2021, 191, 881-898.	7.5	39
314	Purification and partial characterization of a novel thermophilic carboxylesterase with high mesophilic specific activity. Enzyme and Microbial Technology, 1995, 17, 816-825.	3.2	38
315	Evaluation of the lipase from Bacillus thermocatenulatus as an enantioselective biocatalyst. Tetrahedron: Asymmetry, 2003, 14, 3679-3687.	1.8	38
316	Covalent immobilisation of manganese peroxidases (MnP) from Phanerochaete chrysosporium and Bjerkandera sp. BOS55. Enzyme and Microbial Technology, 2003, 32, 769-775.	3.2	38
317	Overproduction of Thermus sp. Strain T2 β-Galactosidase in Escherichia coli and Preparation by Using Tailor-Made Metal Chelate Supports. Applied and Environmental Microbiology, 2003, 69, 1967-1972.	3.1	38
318	Different Properties of the Lipases Contained in Porcine Pancreatic Lipase Extracts as Enantioselective Biocatalysts. Biotechnology Progress, 2004, 20, 825-829.	2.6	38
319	Immobilization and Stabilization of a Cyclodextrin Glycosyltransferase by Covalent Attachment on Highly Activated Glyoxyl-Agarose Supports. Biotechnology Progress, 2006, 22, 1140-1145.	2.6	38
320	Improved Stabilization of Genetically Modified Penicillin G Acylase in the Presence of Organic Cosolvents by Co- Immobilization of the Enzyme with Polyethyleneimine. Advanced Synthesis and Catalysis, 2007, 349, 459-464.	4.3	38
321	Increasing the binding strength of proteins to PEI coated supports by immobilizing at high ionic strength. Enzyme and Microbial Technology, 2005, 37, 295-299.	3.2	37
322	New Cationic Exchanger Support for Reversible Immobilization of Proteins. Biotechnology Progress, 2008, 20, 284-288.	2.6	37
323	Optimization of pineapple flavour synthesis by esterification catalysed by immobilized lipase from <i>Rhizomucor miehei</i> . Flavour and Fragrance Journal, 2012, 27, 196-200.	2.6	37

Immobilization of pectinase on chitosan-magnetic particles: Influence of particle preparation protocol on enzyme properties for fruit juice clarification. Biotechnology Reports (Amsterdam,) Tj ETQq0 0 0 rgBT /@4erlock 30 Tf 50 57 324

#	Article	IF	CITATIONS
325	Coimmobilization of different lipases: Simple layer by layer enzyme spatial ordering. International Journal of Biological Macromolecules, 2020, 145, 856-864.	7.5	37
326	Advantages of Supports Activated with Divinyl Sulfone in Enzyme Coimmobilization: Possibility of Multipoint Covalent Immobilization of the Most Stable Enzyme and Immobilization via Ion Exchange of the Least Stable Enzyme. ACS Sustainable Chemistry and Engineering, 2021, 9, 7508-7518.	6.7	37
327	Regioselective enzymatic hydrolysis of acetylated pyranoses and pyranosides using immobilised lipases. An easy chemoenzymatic synthesis of α- and β-d-glucopyranose acetates bearing a free secondary C-4 hydroxyl group. Carbohydrate Research, 2002, 337, 1615-1621.	2.3	36
328	Improving the Industrial Production of 6-APA: Enzymatic Hydrolysis of Penicillin G in the Presence of Organic Solvents. Biotechnology Progress, 2003, 19, 1639-1642.	2.6	36
329	Purification and identification of different lipases contained in PPL commercial extracts: A minor contaminant is the main responsible of most esterasic activity. Enzyme and Microbial Technology, 2006, 39, 817-823.	3.2	36
330	Support engineering: relation between development of new supports for immobilization of lipases and their applications. Biotechnology Research and Innovation, 2017, 1, 26-34.	0.9	36
331	Enzymatic synthesis of ethyl esters from waste oil using mixtures of lipases in a plugâ€flow packedâ€bed continuous reactor. Biotechnology Progress, 2018, 34, 952-959.	2.6	36
332	A new heterofunctional amino-vinyl sulfone support to immobilize enzymes: Application to the stabilization of β-galactosidase from A spergillus oryzae. Process Biochemistry, 2018, 64, 200-205.	3.7	36
333	Influence of phosphate anions on the stability of immobilized enzymes. Effect of enzyme nature, immobilization protocol and inactivation conditions. Process Biochemistry, 2020, 95, 288-296.	3.7	36
334	Enzymatic synthesis of biolubricants from by-product of soybean oil processing catalyzed by different biocatalysts of Candida rugosa lipase. Catalysis Today, 2021, 362, 122-129.	4.4	36
335	Immobilization of Eversa® Transform via CLEA Technology Converts It in a Suitable Biocatalyst for Biolubricant Production Using Waste Cooking Oil. Molecules, 2021, 26, 193.	3.8	36
336	The use of stabilised penicillin acylase derivatives improves the design of kinetically controlled synthesis. Journal of Molecular Catalysis A, 1995, 101, 91-97.	4.8	35
337	Coimmobilization of L-asparaginase and glutamate dehydrogenase onto highly activated supports. Enzyme and Microbial Technology, 2001, 28, 696-704.	3.2	35
338	Enzyme-Coated Micro-Crystals: An Almost Forgotten but Very Simple and Elegant Immobilization Strategy. Catalysts, 2020, 10, 891.	3.5	35
339	A controlled fed-batch cultivation for the production of new crude lipases from Candida rugosa with improved properties in fine chemistry. Journal of Biotechnology, 1999, 69, 169-182.	3.8	34
340	Chemo-biocatalytic regioselective one-pot synthesis of different deprotected monosaccharides. Catalysis Today, 2009, 140, 11-18.	4.4	34
341	Effect of solid-phase chemical modification on the features of the lipase from Thermomyces lanuginosus. Process Biochemistry, 2012, 47, 460-466.	3.7	34
342	Use of polyethylenimine to produce immobilized lipase multilayers biocatalysts with very high volumetric activity using octyl-agarose beads: Avoiding enzyme release during multilayer production. Enzyme and Microbial Technology, 2020, 137, 109535.	3.2	34

#	Article	IF	CITATIONS
343	Modification of Enzyme Properties by the use of Inhibitors During Their Stabilisation by Multipoint Covalent Attachment. Biocatalysis and Biotransformation, 1995, 12, 67-76.	2.0	33
344	Positive effects of the multipoint covalent immobilization in the reactivation of partially inactivated derivatives of lipase from Thermomyces lanuginosus. Enzyme and Microbial Technology, 2009, 44, 386-393.	3.2	33
345	Immobilization of Thermomyces lanuginosus Lipase by Different Techniques on Immobead 150 Support: Characterization and Applications. Applied Biochemistry and Biotechnology, 2014, 172, 2507-2520.	2.9	32
346	Preparation of Magnetic Cross-Linked Amyloglucosidase Aggregates: Solving Some Activity Problems. Catalysts, 2018, 8, 496.	3.5	32
347	Dextran Aldehyde in Biocatalysis: More Than a Mere Immobilization System. Catalysts, 2019, 9, 622.	3.5	32
348	Improving the Yields and Reaction Rate in the Ethanolysis of Soybean Oil by Using Mixtures of Lipase CLEAs. Molecules, 2019, 24, 4392.	3.8	32
349	Stabilizing effect of penicillin G sulfoxide, a competitive inhibitor of penicillin G acylase: Its practical applications. Enzyme and Microbial Technology, 1991, 13, 210-214.	3.2	31
350	Tuning lipase B from Candida antarctica C–C bond promiscuous activity by immobilization on poly-styrene-divinylbenzene beads. RSC Advances, 2014, 4, 6219.	3.6	31
351	Performance of Different Immobilized Lipases in the Syntheses of Short- and Long-Chain Carboxylic Acid Esters by Esterification Reactions in Organic Media. Molecules, 2018, 23, 766.	3.8	31
352	Resolution of (±)-5-substituted-6-(5-chloropyridin-2-yl)-7-oxo-5,6-dihydropyrrolo[3,4b]pyrazine derivatives-precursors of (S)-(+)-Zopiclone, catalyzed by immobilized Candida antarctica B lipase in aqueous media. Tetrahedron: Asymmetry, 2003, 14, 429-438.	1.8	30
353	Selective adsorption of large proteins on highly activated IMAC supports in the presence of high imidazole concentrations: Purification, reversible immobilization and stabilization of thermophilic α- and β-galactosidases. Enzyme and Microbial Technology, 2007, 40, 242-248.	3.2	30
354	Partial and enantioselective hydrolysis of diethyl phenylmalonate by immobilized preparations of lipase from Thermomyces lanuginose. Enzyme and Microbial Technology, 2007, 40, 1280-1285.	3.2	30
355	Immobilization–stabilization of an α-galactosidase from Thermus sp. strain T2 by covalent immobilization on highly activated supports: Selection of the optimal immobilization strategy. Enzyme and Microbial Technology, 2008, 42, 265-271.	3.2	30
356	Pilotâ€scale development of core–shell polymer supports for the immobilization of recombinant lipase B from <i>Candida antarctica</i> and their application in the production of ethyl esters from residual fatty acids. Journal of Applied Polymer Science, 2018, 135, 46727.	2.6	30
357	Enzyme-support interactions and inactivation conditions determine Thermomyces lanuginosus lipase inactivation pathways: Functional and florescence studies. International Journal of Biological Macromolecules, 2021, 191, 79-91.	7.5	30
358	Directed Covalent Immobilization of Aminated DNA Probes on Aminated Plates. Biomacromolecules, 2004, 5, 883-888.	5.4	29
359	Improved reactivation of immobilized-stabilized lipase from Thermomyces lanuginosus by its coating with highly hydrophilic polymers. Journal of Biotechnology, 2009, 144, 113-119.	3.8	29
360	Selective synthesis of partial glycerides of conjugated linoleic acids via modulation of the catalytic properties of lipases by immobilization on different supports. Food Chemistry, 2018, 245, 39-46.	8.2	29

#	Article	IF	CITATIONS
361	Kinetic characterization of carbonic anhydrase immobilized on magnetic nanoparticles as biocatalyst for CO2 capture. Biochemical Engineering Journal, 2018, 138, 1-11.	3.6	29
362	Combi-CLEAs of Glucose Oxidase and Catalase for Conversion of Glucose to Gluconic Acid Eliminating the Hydrogen Peroxide to Maintain Enzyme Activity in a Bubble Column Reactor. Catalysts, 2019, 9, 657.	3.5	29
363	Modulation of Lecitase properties via immobilization on differently activated Immobead-350: Stabilization and inversion of enantiospecificity. Process Biochemistry, 2019, 87, 128-137.	3.7	29
364	Use of glyoxyl-agarose immobilized ficin extract in milk coagulation: Unexpected importance of the ficin loading on the biocatalysts. International Journal of Biological Macromolecules, 2020, 144, 419-426.	7.5	29
365	Enzyme Stabilization by Multipoint Covalent Attachment to Activated Pre-Existing Supports. Studies in Organic Chemistry, 1993, 47, 55-62.	0.2	29
366	Stabilization of the quaternary structure of a hexameric alpha-galactosidase from Thermus sp. T2 by immobilization and post-immobilization techniques. Process Biochemistry, 2008, 43, 193-198.	3.7	28
367	Immobilization of the acylase from Escherichia coli on glyoxyl-agarose gives efficient catalyst for the synthesis of cephalosporins. Enzyme and Microbial Technology, 2008, 42, 121-129.	3.2	28
368	Production and immobilization of Geotrichum candidum lipase via physical adsorption on eco-friendly support: Characterization of the catalytic properties in hydrolysis and esterification reactions. Journal of Molecular Catalysis B: Enzymatic, 2015, 118, 43-51.	1.8	28
369	Immobilization of Lipases on Heterofunctional Octyl–Glyoxyl Agarose Supports. Methods in Enzymology, 2016, 571, 73-85.	1.0	28
370	Preparation of Crosslinked Enzyme Aggregates of a Thermostable Cyclodextrin Glucosyltransferase from Thermoanaerobacter sp. Critical Effect of the Crosslinking Agent. Catalysts, 2019, 9, 120.	3.5	28
371	Multi-Combilipases: Co-Immobilizing Lipases with Very Different Stabilities Combining Immobilization via Interfacial Activation and Ion Exchange. The Reuse of the Most Stable Co-Immobilized Enzymes after Inactivation of the Least Stable Ones. Catalysts, 2020, 10, 1207.	3.5	28
372	Industrial design of enzymic processes catalysed by very active immobilized derivatives: utilization of diffusional limitations (gradients of pH) as a profitable tool in enzyme engineering. Biotechnology and Applied Biochemistry, 1994, 20, 357-369.	3.1	28
373	Decyl esters production from soybean-based oils catalyzed by lipase immobilized on differently functionalized rice husk silica and their characterization as potential biolubricants. Enzyme and Microbial Technology, 2022, 157, 110019.	3.2	28
374	Modulation of the properties of penicillin G acylase by acyl donor substrates during n-protection of amino compounds. Enzyme and Microbial Technology, 1998, 22, 583-587.	3.2	27
375	Enzymatic synthesis of amoxicillin:Avoiding limitations of the mechanistic approach for reaction kinetics. Biotechnology and Bioengineering, 2002, 80, 622-631.	3.3	27
376	Purification, immobilization and stabilization of a highly enantioselective alcohol dehydrogenase from Thermus thermophilus HB27 cloned in E. coli. Process Biochemistry, 2009, 44, 1004-1012.	3.7	27
377	Comparing methods of determining Legionella spp. in complex water matrices. BMC Microbiology, 2015, 15, 91.	3.3	27
378	Synergistic effects of Pectinex Ultra Clear and Lallzyme Beta on yield and bioactive compounds extraction of Concord grape juice. LWT - Food Science and Technology, 2016, 72, 157-165.	5.2	27

Roberto Fernandez-Lafuente

#	Article	IF	CITATIONS
379	1,3â€Regiospecific ethanolysis of soybean oil catalyzed by crosslinked porcine pancreas lipase aggregates. Biotechnology Progress, 2018, 34, 910-920.	2.6	27
380	Maltose Production Using Starch from Cassava Bagasse Catalyzed by Cross-Linked β-Amylase Aggregates. Catalysts, 2018, 8, 170.	3.5	27
381	Modified silicates and carbon nanotubes for immobilization of lipase from Rhizomucor miehei: Effect of support and immobilization technique on the catalytic performance of the immobilized biocatalysts. Enzyme and Microbial Technology, 2021, 144, 109739.	3.2	27
382	The combination of covalent and ionic exchange immobilizations enables the coimmobilization on vinyl sulfone activated supports and the reuse of the most stable immobilized enzyme. International Journal of Biological Macromolecules, 2022, 199, 51-60.	7.5	27
383	A Kinetic Study of Synthesis of Amoxicillin Using Penicillin G Acylase Immobilized on Agarose. Applied Biochemistry and Biotechnology, 2000, 84-86, 931-946.	2.9	26
384	Improving the Activity of Lipases from Thermophilic Organisms at Mesophilic Temperatures for Biotechnology Applications. Biomacromolecules, 2004, 5, 249-254.	5.4	26
385	Penicillin G acylase catalyzed acylation of 7-ACA in aqueous two-phase systems using kinetically and thermodynamically controlled strategies: improved enzymatic synthesis of 7-[(1-hydroxy-1-phenyl)-acetamido]-3-acetoxymethyl-Δ3-cephem-4-carboxylic acid. Enzyme and Microbial Technology. 2005. 36. 672-679.	3.2	26
386	Optical fibre biosensors using enzymatic transducers to monitor glucose. Measurement Science and Technology, 2007, 18, 3177-3186.	2.6	26
387	Preparation of linear oligosaccharides by a simple monoprotective chemo-enzymatic approach. Tetrahedron, 2008, 64, 9286-9292.	1.9	26
388	Separation and Immobilization of Lipase from Penicillium simplicissimum by Selective Adsorption on Hydrophobic Supports. Applied Biochemistry and Biotechnology, 2009, 156, 133-145.	2.9	26
389	Multipoint covalent immobilization of lipases on aldehyde-activated support: Characterization and application in transesterification reaction. Journal of Molecular Catalysis B: Enzymatic, 2013, 94, 57-62.	1.8	26
390	Evaluation of the performance of differently immobilized recombinant lipase B from Candida antarctica preparations for the synthesis of pharmacological derivatives in organic media. RSC Advances, 2016, 6, 4043-4052.	3.6	26
391	Solid phase chemical modification of agarose glyoxyl-ficin: Improving activity and stability properties by amination and modification with glutaraldehyde. Process Biochemistry, 2018, 73, 109-116.	3.7	26
392	A review on the immobilization of pepsin: A Lys-poor enzyme that is unstable at alkaline pH values. International Journal of Biological Macromolecules, 2022, 210, 682-702.	7.5	26
393	Aqueous enzymatic extraction of Ricinus communis seeds oil using Viscozyme L. Industrial Crops and Products, 2021, 170, 113811.	5.2	25
394	Design of a sustainable process for enzymatic production of ethylene glycol diesters via hydroesterification of used soybean cooking oil. Journal of Environmental Chemical Engineering, 2022, 10, 107062.	6.7	25
395	Chemoenzymatic one-pot synthesis of cefazolin from cephalosporin C in fully aqueous medium, involving three consecutive biotransformations catalyzed by D-aminoacid oxidase, glutaryl acylase and penicillin G acylase. Tetrahedron Letters, 1997, 38, 4693-4696.	1.4	24
396	Selective and mild adsorption of large proteins on lowly activated immobilized metal ion affinity chromatography matrices. Journal of Chromatography A, 2004, 1055, 93-98.	3.7	24

#	Article	IF	CITATIONS
397	Reversible immobilization of a hexameric α-galactosidase from Thermus sp. strain T2 on polymeric ionic exchangers. Process Biochemistry, 2008, 43, 1142-1146.	3.7	24
398	Oriented Covalent Immobilization of Antibodies on Physically Inert and Hydrophilic Support Surfaces through Their Glycosidic Chains. Biomacromolecules, 2008, 9, 719-723.	5.4	24
399	Complete reactivation of immobilized derivatives of a trimeric glutamate dehydrogenase from Thermus thermophillus. Process Biochemistry, 2010, 45, 107-113.	3.7	24
400	Preparation of a Six-Enzyme Multilayer Combi-Biocatalyst: Reuse of the Most Stable Enzymes after Inactivation of the Least Stable One. ACS Sustainable Chemistry and Engineering, 2022, 10, 3920-3934.	6.7	24
401	Immobilization of Rennet fromMucormieheivia Its Sugar Chain. Its Use in Milk Coagulation. Biomacromolecules, 2004, 5, 2029-2033.	5.4	23
402	Optimization of the modification of carrier proteins with aminated haptens. Journal of Immunological Methods, 2005, 307, 144-149.	1.4	23
403	Purification, stabilization, and concentration of very weak protein-protein complexes: Shifting the association equilibrium via complex selective adsorption on lowly activated supports. Proteomics, 2005, 5, 4062-4069.	2.2	23
404	Solid phase proteomics: Dramatic reinforcement of very weak protein–protein interactions. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 849, 243-250.	2.3	23
405	Evaluation of Different Glutaryl Acylase Mutants to Improve the Hydolysis of Cephalosporin C in the Absence of Hydrogen Peroxide. Advanced Synthesis and Catalysis, 2008, 350, 343-348.	4.3	23
406	Reversible Immobilization of Glutaryl Acylase on Sepabeads Coated with Polyethyleneimine. Biotechnology Progress, 2008, 20, 533-536.	2.6	23
407	Amination of ficin extract to improve its immobilization on glyoxyl-agarose: Improved stability and activity versus casein. International Journal of Biological Macromolecules, 2019, 133, 412-419.	7.5	23
408	Sustainable Enzymatic Synthesis of a Solketal Ester—Process Optimization and Evaluation of Its Antimicrobial Activity. Catalysts, 2020, 10, 218.	3.5	23
409	Production of Jet Biofuels by Catalytic Hydroprocessing of Esters and Fatty Acids: A Review. Catalysts, 2022, 12, 237.	3.5	23
410	Regioselective hydrolysis of peracetylated α-D-glucopyranose catalyzed by immobilized lipases in aqueous medium. A facile preparation of useful intermediates for oligosaccharide synthesis. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 633-636.	2.2	22
411	Detection of Polyclonal Antibody Against Any Area of the Protein-Antigen Using Immobilized Protein-Antigens: The Critical Role of the Immobilization Protocol. Biomacromolecules, 2006, 7, 540-544.	5.4	22
412	Directed immobilization of CGTase: The effect of the enzyme orientation on the enzyme activity and its use in packed-bed reactor for continuous production of cyclodextrins. Process Biochemistry, 2017, 58, 120-127.	3.7	22
413	Rapid and high yield production of phospholipids enriched in CLA via acidolysis: The critical role of the enzyme immobilization protocol. Food Chemistry, 2019, 296, 123-131.	8.2	22
414	Cooperativity of covalent attachment and ion exchange on alcalase immobilization using glutaraldehyde chemistry: Enzyme stabilization and improved proteolytic activity. Biotechnology Progress, 2019, 35, e2768.	2.6	22

#	Article	IF	CITATIONS
415	Immobilized Biocatalysts of Eversa® Transform 2.0 and Lipase from Thermomyces Lanuginosus: Comparison of Some Properties and Performance in Biodiesel Production. Catalysts, 2020, 10, 738.	3.5	22
416	Supports coated with PEI as a new tool in chromatography. Enzyme and Microbial Technology, 2006, 39, 711-716.	3.2	21
417	Biotechnological prospects of the lipase from Mucor javanicus. Journal of Molecular Catalysis B: Enzymatic, 2013, 93, 34-43.	1.8	21
418	Optimized butyl butyrate synthesis catalyzed by <i>Thermomyces lanuginosus</i> lipase. Biotechnology Progress, 2013, 29, 1416-1421.	2.6	21
419	Efficient purification-immobilization of an organic solvent-tolerant lipase from Staphylococcus warneri EX17 on porous styrene-divinylbenzene beads. Journal of Molecular Catalysis B: Enzymatic, 2014, 99, 51-55.	1.8	21
420	Multipurpose fixed-bed bioreactor to simplify lipase production by solid-state fermentation and application in biocatalysis. Biochemical Engineering Journal, 2019, 144, 1-7.	3.6	21
421	Enzymatic clarification of orange juice in continuous bed reactors: Fluidized-bed versus packed-bed reactor. Catalysis Today, 2021, 362, 184-191.	4.4	21
422	Immobilization of xylanase on differently functionalized silica gel supports for orange juice clarification. Process Biochemistry, 2022, 113, 270-280.	3.7	21
423	Enantioselective enzymatic hydrolysis of racemic glycidyl esters by using immobilized porcine pancreas lipase with improved catalytic properties. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 757-763.	1.8	20
424	Detection and purification of two antibody–antigen complexes via selective adsorption on lowly activated anion exchangers. Journal of Chromatography A, 2004, 1059, 89-94.	3.7	20
425	Preparation of a very stable immobilized Solanum tuberosum epoxide hydrolase. Tetrahedron: Asymmetry, 2007, 18, 1233-1238.	1.8	20
426	Enzymatic synthesis of cephalosporins. The immobilized acylase from Arthrobacter viscosus: A new useful biocatalyst. Applied Microbiology and Biotechnology, 2007, 77, 579-587.	3.6	20
427	Modulation of a lipase from Staphylococcus warneri EX17 using immobilization techniques. Journal of Molecular Catalysis B: Enzymatic, 2009, 60, 125-132.	1.8	20
428	Simple strategy of reactivation of a partially inactivated penicillin g acylase biocatalyst in organic solvent and its impact on the synthesis of Î²â€łactam antibiotics. Biotechnology and Bioengineering, 2009, 103, 472-479.	3.3	20
429	Rapid determination of the synthetic activity of lipases/esterases via transesterification and esterification zymography. Fuel, 2016, 177, 123-129.	6.4	20
430	Effect of amine length in the interference of the multipoint covalent immobilization of enzymes on glyoxyl agarose beads. Journal of Biotechnology, 2021, 329, 128-142.	3.8	20
431	Application of Rhizomucor miehei lipase-displaying Pichia pastoris whole cell for biodiesel production using agro-industrial residuals as substrate. International Journal of Biological Macromolecules, 2021, 189, 734-743.	7.5	20
432	Essential role of the concentration of immobilized ligands in affinity chromatography:. Biomedical Applications, 2000, 740, 211-218.	1.7	19

#	Article	IF	CITATIONS
433	The role of 6-aminopenicillanic acid on the kinetics of amoxicillin enzymatic synthesis catalyzed by penicillin G acylase immobilized onto glyoxyl-agarose. Enzyme and Microbial Technology, 2002, 31, 464-471.	3.2	19
434	Influence of Substrate Structure on PGA-Catalyzed Acylations. Evaluation of Different Approaches for the Enzymatic Synthesis of Cefonicid. Advanced Synthesis and Catalysis, 2005, 347, 121-128.	4.3	19
435	Regioselective monohydrolysis of per-O-acetylated-1-substituted-β-glucopyranosides catalyzed by immobilized lipases. Tetrahedron, 2008, 64, 10721-10727.	1.9	19
436	Tuning dimeric formate dehydrogenases reduction/oxidation activities by immobilization. Process Biochemistry, 2019, 85, 97-105.	3.7	19
437	Composites of Crosslinked Aggregates of Eversa® Transform and Magnetic Nanoparticles. Performance in the Ethanolysis of Soybean Oil. Catalysts, 2020, 10, 817.	3.5	19
438	Stabilization of a tetrameric enzyme (α-amino acid ester hydrolase from Acetobacter turbidans) enables a very improved performance of ampicillin synthesis. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 633-638.	1.8	18
439	Unusual enzymatic resolution of (±)-glycidyl-butyrate for the production of (S)-glycidyl derivatives. Enzyme and Microbial Technology, 2006, 38, 429-435.	3.2	18
440	Asymmetric hydrolysis of dimethyl 3-phenylglutarate catalyzed by Lecitase Ultra®. Enzyme and Microbial Technology, 2008, 43, 531-536.	3.2	18
441	Different derivatives of a lipase display different regioselectivity in the monohydrolysis of per-O-acetylated 1-O-substituted-β-galactopyranosides. Journal of Molecular Catalysis B: Enzymatic, 2009, 58, 36-40.	1.8	18
442	Solid-phase modification with succinic polyethyleneglycol of aminated lipase B from Candida antarctica: Effect of the immobilization protocol on enzyme catalytic properties. Journal of Molecular Catalysis B: Enzymatic, 2013, 87, 75-82.	1.8	18
443	Use of Lecitase-Ultra immobilized on styrene-divinylbenzene beads as catalyst of esterification reactions: Effects of ultrasounds. Catalysis Today, 2015, 255, 27-32.	4.4	18
444	Effect of feather meal as proteic feeder on combi-CLEAs preparation for grape juice clarification. Process Biochemistry, 2017, 62, 122-127.	3.7	18
445	Structural differences of commercial and recombinant lipase B from Candida antarctica: An important implication on enzymes thermostability. International Journal of Biological Macromolecules, 2019, 140, 761-770.	7.5	18
446	The Î ² -galactosidase immobilization protocol determines its performance as catalysts in the kinetically controlled synthesis of lactulose. International Journal of Biological Macromolecules, 2021, 176, 468-478.	7.5	18
447	Enzymatic Synthesis of Fatty Acid Isoamyl Monoesters from Soybean Oil Deodorizer Distillate: A Renewable and Ecofriendly Base Stock for Lubricant Industries. Molecules, 2022, 27, 2692.	3.8	18
448	Resolution of racemic mixtures by synthesis reactions catalyzed by immobilized derivatives of the enzyme penicillin G acylase. Journal of Molecular Catalysis, 1993, 84, 365-371.	1.2	17
449	A Simple Strategy for the Purification of Large Thermophilic Proteins Overexpressed in Mesophilic Microorganisms: Application to Multimeric Enzymes from Thermus sp. Strain T2 Expressed in Escherichia coli. Biotechnology Progress, 2004, 20, 1507-1511.	2.6	17
450	Modification of Immobead 150 support for protein immobilization: Effects on the properties of immobilized <i>Aspergillus oryzae</i> βâ€galactosidase. Biotechnology Progress, 2018, 34, 934-943.	2.6	17

#	Article	IF	CITATIONS
451	Further Stabilization of Alcalase Immobilized on Glyoxyl Supports: Amination Plus Modification with Glutaraldehyde. Molecules, 2018, 23, 3188.	3.8	17
452	Effect of Concentrated Salts Solutions on the Stability of Immobilized Enzymes: Influence of Inactivation Conditions and Immobilization Protocol. Molecules, 2021, 26, 968.	3.8	17
453	ULTRASOUND-ASSISTED TRANSESTERIFICATION OF SOYBEAN OIL USING COMBI-LIPASE BIOCATALYSTS. Brazilian Journal of Chemical Engineering, 2019, 36, 995-1005.	1.3	17
454	Simple Purification of Immunoglobulins from Whey Proteins Concentrate. Biotechnology Progress, 2006, 22, 590-594.	2.6	16
455	Fast immunosensing technique to detect Legionella pneumophila in different natural and anthropogenic environments: comparative and collaborative trials. BMC Microbiology, 2013, 13, 88.	3.3	16
456	Design and activity of novel lactoferrampin analogues against O157:H7 enterohemorrhagic <i>escherichia coli</i> . Biopolymers, 2014, 101, 319-328.	2.4	16
457	Synthesis of butyl esters via ultrasound-assisted transesterification of macaúba (Acrocomia aculeata) acid oil using a biomass-derived fermented solid as biocatalyst. Journal of Molecular Catalysis B: Enzymatic, 2016, 133, S213-S219.	1.8	16
458	Effects of immobilization, pH and reaction time in the modulation of α-, β- or γ-cyclodextrins production by cyclodextrin glycosyltransferase: Batch and continuous process. Carbohydrate Polymers, 2017, 169, 41-49.	10.2	16
459	Combination of ultrasound, enzymes and mechanical stirring: A new method to improve Vitis vinifera Cabernet Sauvignon must yield, quality and bioactive compounds. Food and Bioproducts Processing, 2017, 105, 197-204.	3.6	16
460	Production and optimization of isopropyl palmitate via biocatalytic route using homeâ€made enzymatic catalysts. Journal of Chemical Technology and Biotechnology, 2019, 94, 389-397.	3.2	16
461	Understanding the degree of estolide enzymatic polymerization and the effects on its lubricant properties. Fuel, 2019, 245, 286-293.	6.4	16
462	Optimization of simultaneous saccharification and isomerization of dextrin to high fructose syrup using a mixture of immobilized amyloglucosidase and glucose isomerase. Catalysis Today, 2021, 362, 175-183.	4.4	16
463	Phenolic compounds in mango fruit: a review. Journal of Food Measurement and Characterization, 2022, 16, 619-636.	3.2	16
464	Coimmobilization of lipases exhibiting three very different stability ranges. Reuse of the active enzymes and selective discarding of the inactivated ones. International Journal of Biological Macromolecules, 2022, 206, 580-590.	7.5	16
465	Chemical amination of immobilized enzymes for enzyme coimmobilization: Reuse of the most stable immobilized and modified enzyme. International Journal of Biological Macromolecules, 2022, 208, 688-697.	7.5	16
466	Design of Artificial Enzymes Bearing Several Active Centers: New Trends, Opportunities and Problems. International Journal of Molecular Sciences, 2022, 23, 5304.	4.1	16
467	Biological activities of peptides obtained by pepsin hydrolysis of fishery products. Process Biochemistry, 2022, 120, 53-63.	3.7	16
468	Adsorption Behavior of Bovine Serum Albumin on Lowly Activated Anionic Exchangers Suggests a New Strategy for Solid-Phase Proteomics. Biomacromolecules, 2006, 7, 1357-1361.	5.4	15

#	Article	IF	CITATIONS
469	Effects of oxygen volumetric mass transfer coefficient and pH on lipase production by Staphylococcus warneri EX17. Biotechnology and Bioprocess Engineering, 2009, 14, 105-111.	2.6	15
470	Positive effect of glycerol on the stability of immobilized enzymes: Is it a universal fact?. Process Biochemistry, 2021, 102, 108-121.	3.7	15
471	Reducing enzyme conformational flexibility by multi-point covalent immobilisation. Biotechnology Letters, 1995, 9, 1-6.	0.5	14
472	Resolution of paroxetine precursor using different lipases. Enzyme and Microbial Technology, 2004, 34, 264-269.	3.2	14
473	Preparation of an immobilized–stabilized catalase derivative from Aspergillus niger having its multimeric structure stabilized: The effect of Zn2+ on enzyme stability. Journal of Molecular Catalysis B: Enzymatic, 2008, 55, 142-145.	1.8	14
474	Physico-chemical properties, kinetic parameters, and glucose inhibition of several beta-glucosidases for industrial applications. Process Biochemistry, 2019, 78, 82-90.	3.7	14
475	Heterogeneous Enzyme Kinetics. , 2008, , 155-203.		14
476	Stabilization of enzymes by multipoint attachment via reversible immobilization on phenylboronic activated supports. Journal of Biotechnology, 2005, 120, 396-401.	3.8	13
477	Inhibitory effects in the side reactions occurring during the enzymic synthesis of amoxicillin: p-hydroxyphenylglycine methyl ester and amoxicillin hydrolysis. Biotechnology and Applied Biochemistry, 2003, 38, 77.	3.1	12
478	Enantioselective Synthesis of Phenylacetamides in the Presence of High Organic Cosolvent Concentrations Catalyzed by Stabilized Penicillin G Acylase. Effect of the Acyl Donor. Biotechnology Progress, 2004, 20, 984-988.	2.6	12
479	Screening of lipases for regioselective hydrolysis of peracetylated β-monosaccharides. Journal of Molecular Catalysis B: Enzymatic, 2007, 49, 12-17.	1.8	12
480	Purification, immobilization, and characterization of a specific lipase from <i>Staphylococcus warneri</i> EX17 by enzyme fractionating via adsorption on different hydrophobic supports. Biotechnology Progress, 2011, 27, 717-723.	2.6	12
481	Editorial for Special Issue: Enzyme Immobilization and Its Applications. Molecules, 2019, 24, 4619.	3.8	12
482	Immobilization of the Peroxygenase from Agrocybe aegerita. The Effect of the Immobilization pH on the Features of an Ionically Exchanged Dimeric Peroxygenase. Catalysts, 2021, 11, 560.	3.5	12
483	Multi-Point Covalent Immobilization of Enzymes on Supports Activated with Epoxy Groups: Stabilization of Industrial Enzymes. Methods in Molecular Biology, 2020, 2100, 109-117.	0.9	12
484	Use of an Antisense RNA Strategy To Investigate the Functional Significance of Mn-Catalase in the Extreme Thermophile Thermus thermophilus. Journal of Bacteriology, 2004, 186, 7804-7806.	2.2	11
485	Production of a Thermoresistant Alpha-galactosidase fromThermussp. Strain T2 for Food Processing. Food Biotechnology, 2007, 21, 91-103.	1.5	11
486	Thermodynamically Controlled Synthesis of Amide Bonds Catalyzed by Highly Organic Solvent-Resistant Penicillin Acylase Derivatives. Biotechnology Progress, 2008, 20, 117-121.	2.6	11

#	Article	IF	CITATIONS
487	Lipozyme 435-Mediated Synthesis of Xylose Oleate in Methyl Ethyl Ketone. Molecules, 2021, 26, 3317.	3.8	11
488	Lipase Regioselective <i>O</i> â€Acetylations of a <i>myo</i> â€Inositol Derivative: Efficient Desymmetrization of 1,3â€Diâ€ <i>O</i> â€benzylâ€ <i>myo</i> â€inositol. European Journal of Organic Chemistry, 2018, 2018, 386-391.	, 2.4	10
489	Stability/activity features of the main enzyme components of rohapect 10L. Biotechnology Progress, 2019, 35, e2877.	2.6	10
490	Glyoxyl-Activated Agarose as Support for Covalently Link Novo-Pro D: Biocatalysts Performance in the Hydrolysis of Casein. Catalysts, 2020, 10, 466.	3.5	10
491	Effect of Tris Buffer in the Intensity of the Multipoint Covalent Immobilization of Enzymes in Glyoxyl-Agarose Beads. Applied Biochemistry and Biotechnology, 2021, 193, 2843-2857.	2.9	10
492	Stabilization and operational selectivity alteration of Lipozyme 435 by its coating with polyethyleneimine: Comparison of the biocatalyst performance in the synthesis of xylose fatty esters. International Journal of Biological Macromolecules, 2021, 192, 665-674.	7.5	10
493	Simplified Method to Optimize Enzymatic Esters Syntheses in Solvent-Free Systems: Validation Using Literature and Experimental Data. Catalysts, 2021, 11, 1357.	3.5	10
494	Stabilization of immobilized lipases by treatment with metallic phosphate salts. International Journal of Biological Macromolecules, 2022, 213, 43-54.	7.5	10
495	Immobilization-Stabilization of Penicillin G Acylase Annals of the New York Academy of Sciences, 1990, 613, 552-558.	3.8	9
496	Aldehyde–dextran–protein conjugates to immobilize amino-haptens: avoiding cross-reactions in the immunodetection. Enzyme and Microbial Technology, 2005, 36, 510-513.	3.2	9
497	Partial Purification and Immobilization/Stabilization on Highly Activated Glyoxyl-agarose Supports of Different Proteases from Flavourzyme. Journal of Agricultural and Food Chemistry, 2007, 55, 6503-6508.	5.2	9
498	Asymmetric hydrolysis of dimethyl phenylmalonate by immobilized penicillin G acylase from E. coli. Enzyme and Microbial Technology, 2007, 40, 997-1000.	3.2	9
499	Preparation and characterization of cross-linked enzyme aggregates of dextransucrase from Leuconostoc mesenteroides B-512F. Process Biochemistry, 2018, 71, 101-108.	3.7	9
500	Aqueous Extraction of Seed Oil from Mamey Sapote (Pouteria sapota) after Viscozyme L Treatment. Catalysts, 2021, 11, 748.	3.5	9
501	Insolubilized Enzyme Derivatives in Organic Solvents: Mechanisms of Inactivation and Strategies for Reactivation. Progress in Biotechnology, 1992, 8, 221-228.	0.2	9
502	Syntheses of pharmaceutical oligosaccharides catalyzed by immobilized-stabilized derivatives of different β-galactosidases. Journal of Molecular Catalysis, 1993, 84, 373-379.	1.2	8
503	Purification of a Catalase from Thermus thermophilus via IMAC Chromatography: Effect of the Support. Biotechnology Progress, 2004, 20, 1578-1582.	2.6	8
504	Very Strong But Reversible Immobilization of Enzymes on Supports Coated With Ionic Polymers. Methods in Biotechnology, 2006, , 205-216.	0.2	8

#	Article	IF	CITATIONS
505	Dextransucrase immobilized on activated-chitosan particles as a novel biocatalyst. Journal of Molecular Catalysis B: Enzymatic, 2016, 133, S143-S149.	1.8	8
506	Performance of Liquid Eversa on Fatty Acid Ethyl Esters Production by Simultaneous Esterification/Transesterification of Low-to-High Acidity Feedstocks. Catalysts, 2021, 11, 1486.	3.5	8
507	Tuning Immobilized Commercial Lipase Preparations Features by Simple Treatment with Metallic Phosphate Salts. Molecules, 2022, 27, 4486.	3.8	8
508	Crystallization and preliminary X-ray diffraction studies of the BTL2 lipase from the extremophilic microorganism <i>Bacillus thermocatenulatus</i> . Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 1043-1045.	0.7	7
509	Prolongation of secondary drying step of phospholipid lyophilization greatly improves acidolysis reactions catalyzed by immobilized lecitase ultra. Enzyme and Microbial Technology, 2020, 132, 109388.	3.2	7
510	Synthesis of lipase/silica biocatalysts through the immobilization of CALB on porous SBA-15 and their application on the resolution of pharmaceutical derivatives and on nutraceutical enrichment of natural oil. Molecular Catalysis, 2021, 505, 111529.	2.0	7
511	High Lipase Production from Geotrichum candidum in Reduced Time using Cottonseed Oil: Optimization, Easy Purification and Specificity Characterization. Journal of Chemical Engineering Research Updates, 2017, 3, 60-69.	0.1	7
512	Affinity chromatography of plasma proteins (guanidinobenzoatase): use of mimetic matrices and mimetic soluble ligands to prevent the binding of albumin on target affinity matrices. Biomedical Applications, 1999, 732, 165-172.	1.7	6
513	Use of polyvalent cations to improve the adsorption strength between adsorbed enzymes and supports coated with dextran sulfate. Enzyme and Microbial Technology, 2006, 39, 332-336.	3.2	6
514	Effects of Reaction Operation Policies on Properties of Core–Shell Polymer Supports Used for Preparation of Highly Active Biocatalysts. Macromolecular Reaction Engineering, 2019, 13, 1800055.	1.5	6
515	Study Cases of Enzymatic Processes. , 2008, , 253-378.		5
516	Editorial: Special Issue — Enzyme Immobilization. Molecules, 2014, 19, 20671-20674.	3.8	5
517	Optimization and characterization of CLEAs of the very thermostable dimeric peroxidase from Roystonea regia. RSC Advances, 2015, 5, 53047-53053.	3.6	5
518	Preparation of immobilized/stabilized biocatalysts of βâ€glucosidases from different sources: Importance of the support active groups and the immobilization protocol. Biotechnology Progress, 2019, 35, e2890.	2.6	5
519	Recovery of starch from cassava bagasse for cyclodextrin production by sequential treatment with α-amylase and cyclodextrin glycosyltransferase. Biocatalysis and Agricultural Biotechnology, 2019, 22, 101411.	3.1	5
520	Modulation of the Biocatalytic Properties of a Novel Lipase from Psychrophilic Serratia sp. (USBA-GBX-513) by Different Immobilization Strategies. Molecules, 2021, 26, 1574.	3.8	5
521	Fully Dispersed and Covalently Attached Chymotrypsin Derivatives as Industrial Catalysts in Biphasic Systems Annals of the New York Academy of Sciences, 1992, 672, 158-166.	3.8	5
522	Design of Bactericidal Peptides Against Escherichia coli O157:H7, Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. Medicinal Chemistry, 2018, 14, 741-752.	1.5	5

#	Article	lF	CITATIONS
523	Use of aqueous two-phase systems for in situ extraction of water soluble antibiotics during their synthesis by enzymes immobilized on porous supports. Biotechnology and Bioengineering, 1998, 59, 73-9.	3.3	5
524	Resolution of Racemic Mixtures through Stereospecific Kinetically Controlled Synthesis Catalyzed by Penicillin G Acylase Derivatives. Annals of the New York Academy of Sciences, 1995, 750, 425-428.	3.8	4
525	Stabilization of an Amylase fromNeurospora crassaby Immobilization on Highly Activated Supports. Food Biotechnology, 2008, 22, 262-275.	1.5	4
526	Immobilization and stabilization of d-hydantoinase from Vigna angularis and its use in the production of N-carbamoyl-d-phenylglycine. Improvement of the reaction yield by allowing chemical racemization of the substrate. Process Biochemistry, 2020, 95, 251-259.	3.7	4
527	STABILIZATION STUDY OF TETRAMERIC Kluyveromyces lactis Î ² -GALACTOSIDASE BY IMMOBILIZATION ON IMMOBEAD: THERMAL, PHYSICO-CHEMICAL, TEXTURAL AND CATALYTIC PROPERTIES. Brazilian Journal of Chemical Engineering, 2019, 36, 1403-1417.	1.3	4
528	Design of Novel Biocatalysts by "Bioimprinting" during Unfolding-Refolding of Fully Dispersed Covalently Immobilized Enzymes. Annals of the New York Academy of Sciences, 1995, 750, 349-356.	3.8	3
529	Stabilization of immobilized enzymes against organic solvents: Complete hydrophylization of enzymes environments by solidphase chemistry with poly-functional macromolecules Progress in Biotechnology, 1998, , 405-410.	0.2	3
530	One-Step Purification, Immobilization, and Stabilization of Poly-Histidine-Tagged Enzymes Using Metal Chelate-Epoxy Supports. Methods in Biotechnology, 2006, , 117-128.	0.2	3
531	Immobilization of Yarrowia lipolytica Lipase—A Comparison of Stability of Physical Adsorption and Covalent Attachment Techniques. , 2007, , 169-176.		3
532	Chemical modification of lipase B from Candida antarctica for improving biochemical properties of activity, stability and selectivity. New Biotechnology, 2014, 31, S85.	4.4	2
533	Modulation of Activity/Stability Properties of Lipase from Pseudomonas Flourescens by Multipoint Covalent Immobilization on Glyoxyl-Supports. , 1996, , 243-256.		2
534	Very Strong but Reversible Immobilization of Enzymes on Supports Coated with Ionic Polymers. Methods in Molecular Biology, 2020, 2100, 129-141.	0.9	2
535	Selective Enzymatic Oxidations by using Oxygen as oxidizing agent: Immobilization and Stabilization of FNR, a NADP+ regenerating enzyme. Studies in Surface Science and Catalysis, 1994, 82, 685-692.	1.5	1
536	Chemoenzymatic Synthesis of the New 3-((2,3-Diacetoxypropanoyl)oxy)propane-1,2-diyl Diacetate Using Immobilized Lipase B from Candida antarctica and Pyridinium Chlorochromate as an Oxidizing Agent. International Journal of Molecular Sciences, 2020, 21, 6501.	4.1	1
537	Immobilization and Stabilization of Proteins by Multipoint Covalent Attachment on Novel Amino-Epoxy-Sepabeads®. Methods in Biotechnology, 2006, , 153-162.	0.2	1
538	Immobilization-stabilization of proteases as a tool to improve the industrial design of peptide synthesis. Biomedica Biochimica Acta, 1991, 50, S110-3.	0.1	1
539	Preparation of an Industrial Biocatalyst of Penicillin G Acylase on Sepabeads. , 2005, , 273-288.		0
540	MODIFICAÇÃO QUÃMICA DE LECITASE ULTRA EM FASE SÓLIDA: EFEITO DO PROTOCOLO DE IMOBILIZAÇÃ (um espaço) (um espaço). , 0, , .	0	0

#	Article	IF	CITATIONS
541	ESTABILIZAÇÃO DA FORMA ABERTA DE LECITASE ATRAVÉS DA MODIFICAÇÃO FÃ6ICA COM POLÃMEROS IÔNICOS. , 0, , .		0
542	ESTUDO DAS CONDIÇÕES DE IMOBILIZAÇÃO DA LIPASE DE Thermomyces lanuginosus PARA A PRODUÇÃO DE BIODIESEL. , 0, , .)	0
543	ESTABILIZAÇÃ f O DE LECITASE ULTRA POR IMOBILIZAÃ \ddagger Ã f O EM SUPORTE MACROPOROSO. , 0, , .		0