Robert O Watson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9563429/publications.pdf

Version: 2024-02-01

759190 996954 2,327 16 12 15 citations h-index g-index papers 21 21 21 3798 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Mitochondria: Powering the Innate Immune Response to Mycobacterium tuberculosis Infection. Infection and Immunity, 2021, 89, .	2.2	12
2	Elevated type I interferon responses potentiate metabolic dysfunction, inflammation, and accelerated aging in mtDNA mutator mice. Science Advances, 2021, 7, .	10.3	63
3	Global Transcriptomics Uncovers Distinct Contributions From Splicing Regulatory Proteins to the Macrophage Innate Immune Response. Frontiers in Immunology, 2021, 12, 656885.	4.8	16
4	Galectin-8 Senses Phagosomal Damage and Recruits Selective Autophagy Adapter TAX1BP1 To Control <i>Mycobacterium tuberculosis</i> Infection in Macrophages. MBio, 2021, 12, e0187120.	4.1	42
5	The opportunistic intracellular bacterial pathogen Rhodococcus equi elicits type I interferon by engaging cytosolic DNA sensing in macrophages. PLoS Pathogens, 2021, 17, e1009888.	4.7	8
6	Editorial: A Microbial View of Central Nervous System Disorders: Interplay Between Microorganisms, Neuroinflammation and Behaviour. Frontiers in Immunology, 2021, 12, 816227.	4.8	0
7	TRIM14 Is a Key Regulator of the Type I IFN Response during <i>Mycobacterium tuberculosis</i> Infection. Journal of Immunology, 2020, 205, 153-167.	0.8	36
8	LRRK2 maintains mitochondrial homeostasis and regulates innate immune responses to Mycobacterium tuberculosis. ELife, 2020, 9, .	6.0	77
9	The Splicing Factor hnRNP M Is a Critical Regulator of Innate Immune Gene Expression in Macrophages. Cell Reports, 2019, 29, 1594-1609.e5.	6.4	57
10	Exploring the "Multiple-Hit Hypothesis―of Neurodegenerative Disease: Bacterial Infection Comes Up to Bat. Frontiers in Cellular and Infection Microbiology, 2019, 9, 138.	3.9	66
11	A conserved PLPLRT/SD motif of STING mediates the recruitment and activation of TBK1. Nature, 2019, 569, 718-722.	27.8	221
12	Quantitative Yeast Genetic Interaction Profiling of Bacterial Effector Proteins Uncovers a Role for the Human Retromer in Salmonella Infection. Cell Systems, 2018, 7, 323-338.e6.	6.2	15
13	For Better or Worse: Cytosolic DNA Sensing during Intracellular Bacterial Infection Induces Potent Innate Immune Responses. Journal of Molecular Biology, 2016, 428, 3372-3386.	4.2	18
14	The Cytosolic Sensor cGAS Detects Mycobacterium tuberculosis DNA to Induce Type I Interferons and Activate Autophagy. Cell Host and Microbe, 2015, 17, 811-819.	11.0	520
15	The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature, 2013, 501, 512-516.	27.8	487
16	Extracellular M.Âtuberculosis DNA Targets Bacteria for Autophagy by Activating the Host DNA-Sensing Pathway. Cell, 2012, 150, 803-815.	28.9	681