Jean-Pierre Jacquot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9563326/publications.pdf

Version: 2024-02-01

193 10,795 54
papers citations h-index

54 96
h-index g-index

200 7263

37111

200 200 all docs citations

times ranked citing authors

#	Article	IF	CITATIONS
1	Thiol-based redox control in chloroplasts. , 2022, , 507-532.		O
2	Scientific contributions of Pierre Gadal and his labâ€"A tribute to Pierre Gadal (1938â€"2019). Advances in Botanical Research, 2021, , 41-127.	0.5	0
3	Editorial activities for Advances in Botanical Research. Advances in Botanical Research, 2021, 100, 1-18.	0.5	O
4	Interrogating the Role of the Two Distinct Fructose-Bisphosphate Aldolases of Bacillus methanolicus by Site-Directed Mutagenesis of Key Amino Acids and Gene Repression by CRISPR Interference. Frontiers in Microbiology, 2021, 12, 669220.	1.5	8
5	News on the redox front—A follow-up of ABR volume 52: Oxidative stress and redox regulation in plants. Advances in Botanical Research, 2021, 100, 355-378.	0.5	1
6	Thioredoxin and Glutaredoxin Systems Antioxidants Special Issue. Antioxidants, 2019, 8, 68.	2.2	5
7	Dark deactivation of chloroplast enzymes finally comes to light. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9334-9335.	3.3	7
8	Ironâ€"Sulfur Clusters in Chemistry and Biology. Volume 2: Biochemistry, Biosynthesis and Human Diseases.Edited by Tracey Rouault. De Gruyter, 2017. Pp. xxi + 470. Price EUR 99.95, GBP 90.99, USD 140.00, hardcover, ISBN 978-3-11-047985-0 Acta Crystallographica Section D: Structural Biology, 2018, 74, 381-382.	1.1	1
9	Dithiol disulphide exchange in redox regulation of chloroplast enzymes in response to evolutionary and structural constraints. Plant Science, 2017, 255, 1-11.	1.7	38
10	Atypical protein disulfide isomerases (PDI): Comparison of the molecular and catalytic properties of poplar PDI-A and PDI-M with PDI-L1A. PLoS ONE, 2017, 12, e0174753.	1.1	20
11	Chloroplast FBPase and SBPase are thioredoxin-linked enzymes with similar architecture but different evolutionary histories. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6779-6784.	3.3	60
12	Plastidic P2 glucose-6P dehydrogenase from poplar is modulated by thioredoxin m-type: Distinct roles of cysteine residues in redox regulation and NADPH inhibition. Plant Science, 2016, 252, 257-266.	1.7	28
13	Structural and functional characterization of tree proteins involved in redox regulation: a new frontier in forest science. Annals of Forest Science, 2016, 73, 119-134.	0.8	1
14	Highly Efficient CYP167A1 (EpoK) dependent Epothilone B Formation and Production of 7-Ketone Epothilone D as a New Epothilone Derivative. Scientific Reports, 2015, 5, 14881.	1.6	26
15	Quinone- and nitroreductase reactions of Thermotoga maritima thioredoxin reductase. Acta Biochimica Polonica, 2015, 62, 303-309.	0.3	2
16	Transcriptomic Responses of Phanerochaete chrysosporium to Oak Acetonic Extracts: Focus on a New Glutathione Transferase. Applied and Environmental Microbiology, 2014, 80, 6316-6327.	1.4	34
17	Characterization of poplar GrxS14 in different structural forms. Protein and Cell, 2014, 5, 329-333.	4.8	11
18	Monothiol Glutaredoxin–BolA Interactions: Redox Control of Arabidopsis thaliana BolA2 and SufE1. Molecular Plant, 2014, 7, 187-205.	3.9	70

#	Article	IF	Citations
19	Overexpression, purification and enzymatic characterization of a recombinant plastidial glucose-6-phosphate dehydrogenase from barley (Hordeum vulgare cv. Nure) roots. Plant Physiology and Biochemistry, 2013, 73, 266-273.	2.8	28
20	New substrates and activity of Phanerochaete chrysosporium Omega glutathione transferases. Biochimie, 2013, 95, 336-346.	1.3	24
21	Two <i>Sinorhizobium meliloti</i> glutaredoxins regulate iron metabolism and symbiotic bacteroid differentiation. Environmental Microbiology, 2013, 15, 795-810.	1.8	46
22	Atypical features of a Ure2p glutathione transferase from <i>Phanerochaete chrysosporium</i> Letters, 2013, 587, 2125-2130.	1.3	22
23	Putative involvement of Thioredoxin h in early response to gravitropic stimulation of poplar stems. Journal of Plant Physiology, 2013, 170, 707-711.	1.6	13
24	In the Absence of Thioredoxins, What Are the Reductants for Peroxiredoxins in <i>Thermotoga maritima</i> . Antioxidants and Redox Signaling, 2013, 18, 1613-1622.	2.5	9
25	Cysteine–based redox regulation and signaling in plants. Frontiers in Plant Science, 2013, 4, 105.	1.7	114
26	Toward a refined classification of class I dithiol glutaredoxins from poplar: biochemical basis for the definition of two subclasses. Frontiers in Plant Science, 2013, 4, 518.	1.7	30
27	Xenomic networks variability and adaptation traits in wood decaying fungi. Microbial Biotechnology, 2013, 6, 248-263.	2.0	122
28	Diversification of Fungal Specific Class A Glutathione Transferases in Saprotrophic Fungi. PLoS ONE, 2013, 8, e80298.	1.1	38
29	Characterization of a Phanerochaete chrysosporium Glutathione Transferase Reveals a Novel Structural and Functional Class with Ligandin Properties. Journal of Biological Chemistry, 2012, 287, 39001-39011.	1.6	33
30	Hydroperoxide and peroxynitrite reductase activity of poplar thioredoxin-dependent glutathione peroxidase 5: kinetics, catalytic mechanism and oxidative inactivation. Biochemical Journal, 2012, 442, 369-380.	1.7	41
31	Fifty years in the thioredoxin field and a bountiful harvest. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 1822-1829.	1.1	67
32	Glutathione―and glutaredoxinâ€dependent reduction of methionine sulfoxide reductase A. FEBS Letters, 2012, 586, 3894-3899.	1.3	24
33	Quinone- and nitroreductase reactions of Thermotoga maritima peroxiredoxin–nitroreductase hybrid enzyme. Archives of Biochemistry and Biophysics, 2012, 528, 50-56.	1.4	4
34	Atypical Thioredoxins in Poplar: The Glutathione-Dependent Thioredoxin-Like 2.1 Supports the Activity of Target Enzymes Possessing a Single Redox Active Cysteine Â. Plant Physiology, 2012, 159, 592-605.	2.3	39
35	Glutathione regulates the transfer of iron-sulfur cluster from monothiol and dithiol glutaredoxins to apo ferredoxin. Protein and Cell, 2012, 3, 714-721.	4.8	31
36	Glutathione Transferases of Phanerochaete chrysosporium. Journal of Biological Chemistry, 2011, 286, 9162-9173.	1.6	38

#	Article	IF	CITATIONS
37	Comparative genomic study of protein disulfide isomerases from photosynthetic organisms. Genomics, 2011, 97, 37-50.	1.3	50
38	Biochemical properties of poplar thioredoxin z. FEBS Letters, 2011, 585, 1077-1081.	1.3	55
39	Cadmium Affects the Glutathione/Glutaredoxin System in Germinating Pea Seeds. Biological Trace Element Research, 2011, 142, 93-105.	1.9	41
40	1H, 13C, and 15N resonance assignments of reduced GrxS14 from Populus tremulaÂ×Âtremuloides. Biomolecular NMR Assignments, 2011, 5, 121-124.	0.4	4
41	Arabidopsis Chloroplastic Glutaredoxin C5 as a Model to Explore Molecular Determinants for Iron-Sulfur Cluster Binding into Glutaredoxins. Journal of Biological Chemistry, 2011, 286, 27515-27527.	1.6	81
42	Functional Diversification of Fungal Glutathione Transferases from the Ure2p Class. International Journal of Evolutionary Biology, 2011, 2011, 1-9.	1.0	20
43	Abscisic acid effects on activity and expression of barley (Hordeum vulgare) plastidial glucose-6-phosphate dehydrogenase. Journal of Experimental Botany, 2011, 62, 4013-4023.	2.4	45
44	NAD pattern and NADH oxidase activity in pea (Pisum sativum L.) under cadmium toxicity. Physiology and Molecular Biology of Plants, 2010, 16, 305-315.	1.4	6
45	Cadmium induced mitochondrial redox changes in germinating pea seed. BioMetals, 2010, 23, 973-984.	1.8	21
46	The chloroplastic thiol reducing systems: dual functions in the regulation of carbohydrate metabolism and regeneration of antioxidant enzymes, emphasis on the poplar redoxin equipment. Photosynthesis Research, 2010, 104, 75-99.	1.6	31
47	Introduction. Photosynthesis Research, 2010, 104, 1-3.	1.6	0
48	Glutaredoxins: roles in iron homeostasis. Trends in Biochemical Sciences, 2010, 35, 43-52.	3.7	181
49	Hubs and bottlenecks in plant molecular signalling networks. New Phytologist, 2010, 188, 919-938.	3.5	75
50	Oxidative damage and redox change in pea seeds treated with cadmium. Comptes Rendus - Biologies, 2010, 333, 801-807.	0.1	11
51	Engineered mutated glutaredoxins mimicking peculiar plant class III glutaredoxins bind iron–sulfur centers and possess reductase activity. Biochemical and Biophysical Research Communications, 2010, 403, 435-441.	1.0	32
52	Editorial. Molecular Plant, 2009, 2, 369.	3.9	0
53	Comparative Genomic Study of the Thioredoxin Family in Photosynthetic Organisms with Emphasis on Populus trichocarpa. Molecular Plant, 2009, 2, 308-322.	3.9	89
54	Structure-Function Relationship of the Chloroplastic Glutaredoxin S12 with an Atypical WCSYS Active Site. Journal of Biological Chemistry, 2009, 284, 9299-9310.	1.6	80

#	Article	IF	Citations
55	Chapter 6 Reactive Oxygen Species in Phanerochaete chrysosporium Relationship Between Extracellular Oxidative and Intracellular Antioxidant Systems. Advances in Botanical Research, 2009, 52, 153-186.	0.5	11
56	Evolution and diversity of glutaredoxins in photosynthetic organisms. Cellular and Molecular Life Sciences, 2009, 66, 2539-2557.	2.4	139
57	The fungal glutathione S-transferase system. Evidence of new classes in the wood-degrading basidiomycete Phanerochaete chrysosporium. Cellular and Molecular Life Sciences, 2009, 66, 3711-3725.	2.4	81
58	Effect of heat treatment on extracellular enzymatic activities involved in beech wood degradation by Trametes versicolor. Wood Science and Technology, 2009, 43, 331-341.	1.4	39
59	Diversity of chemical mechanisms in thioredoxin catalysis revealed by single-molecule force spectroscopy. Nature Structural and Molecular Biology, 2009, 16, 890-896.	3.6	91
60	Structural and evolutionary aspects of thioredoxin reductases in photosynthetic organisms. Trends in Plant Science, 2009, 14, 336-343.	4.3	94
61	Chapter 13 Glutaredoxin. Advances in Botanical Research, 2009, 52, 405-436.	0.5	2
62	Effects of propiconazole on extra-cellular enzymes involved in nutrient mobilization during Trametes versicolor wood colonization. Wood Science and Technology, 2008, 42, 169-177.	1.4	14
63	Overproduction, purification, crystallization and preliminary X-ray analysis of the peroxiredoxin domain of a larger natural hybrid protein fromThermotoga maritima. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 29-31.	0.7	1
64	Initial stages of Fagus sylvatica wood colonization by the white-rot basidiomycete Trametes versicolor: Enzymatic characterization. International Biodeterioration and Biodegradation, 2008, 61, 287-293.	1.9	35
65	The Role of Glutathione in Photosynthetic Organisms: Emerging Functions for Glutaredoxins and Glutathionylation. Annual Review of Plant Biology, 2008, 59, 143-166.	8.6	485
66	Chloroplast monothiol glutaredoxins as scaffold proteins for the assembly and delivery of [2Fe–2S] clusters. EMBO Journal, 2008, 27, 1122-1133.	3.5	231
67	Getting sick may help plants overcome abiotic stress. New Phytologist, 2008, 180, 738-741.	3.5	45
68	Functional analysis and expression characteristics of chloroplastic Prx IIE. Physiologia Plantarum, 2008, 133, 599-610.	2.6	50
69	Redox based anti-oxidant systems in plants: Biochemical and structural analyses. Biochimica Et Biophysica Acta - General Subjects, 2008, 1780, 1249-1260.	1.1	60
70	An Atypical Catalytic Mechanism Involving Three Cysteines of Thioredoxin. Journal of Biological Chemistry, 2008, 283, 23062-23072.	1.6	43
71	Functional, structural, and spectroscopic characterization of a glutathione-ligated [2Fe–2S] cluster in poplar glutaredoxin C1. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7379-7384.	3.3	166
72	Functional and Structural Aspects of Poplar Cytosolic and Plastidial Type A Methionine Sulfoxide Reductases. Journal of Biological Chemistry, 2007, 282, 3367-3378.	1.6	56

#	Article	IF	Citations
73	Crystal Structures of a Poplar Thioredoxin Peroxidase that Exhibits the Structure of Glutathione Peroxidases: Insights into Redox-driven Conformational Changes. Journal of Molecular Biology, 2007, 370, 512-529.	2.0	93
74	The mitochondrial type II peroxiredoxin from poplar. Physiologia Plantarum, 2007, 129, 196-206.	2.6	49
75	Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiologia Plantarum, 2007, 129, 185-195.	2.6	348
76	Redoxâ€sensitive GFP in <i>Arabidopsis thaliana</i> is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer. Plant Journal, 2007, 52, 973-986.	2.8	420
77	Structural Insight into Poplar Glutaredoxin C1 with a Bridging Ironâ°Sulfur Cluster at the Active Siteâ€,‡. Biochemistry, 2006, 45, 7998-8008.	1.2	94
78	Engineering functional artificial hybrid proteins between poplar peroxiredoxin II and glutaredoxin or thioredoxin. Biochemical and Biophysical Research Communications, 2006, 341, 1300-1308.	1.0	14
79	Plant Glutathione Peroxidases Are Functional Peroxiredoxins Distributed in Several Subcellular Compartments and Regulated during Biotic and Abiotic Stresses. Plant Physiology, 2006, 142, 1364-1379.	2.3	329
80	Identification of a new family of plant proteins loosely related to glutaredoxins with four CxxC motives. Photosynthesis Research, 2006, 89, 71-79.	1.6	24
81	Ascorbate peroxidase–thioredoxin interaction. Photosynthesis Research, 2006, 89, 193-200.	1.6	24
82	Genome-wide analysis of plant glutaredoxin systems. Journal of Experimental Botany, 2006, 57, 1685-1696.	2.4	159
83	Glutathionylation Induces the Dissociation of 1-Cys D-peroxiredoxin Non-covalent Homodimer. Journal of Biological Chemistry, 2006, 281, 31736-31742.	1.6	67
84	Glutathionylation Induces the Dissociation of 1-Cys D-peroxiredoxin Non-covalent Homodimer. Journal of Biological Chemistry, 2006, 281, 31736-31742.	1.6	20
85	Synergistic wood preservatives involving EDTA, irganox 1076 and 2-hydroxypyridine-N-oxide. International Biodeterioration and Biodegradation, 2005, 55, 203-211.	1.9	20
86	The plant multigenic family of thiol peroxidasesâ-†. Free Radical Biology and Medicine, 2005, 38, 1413-1421.	1.3	174
87	The plant thioredoxin system. Cellular and Molecular Life Sciences, 2005, 62, 24-35.	2.4	242
88	Letter to the Editor: 1H, 15N, and 13C resonance assignments of reduced glutaredoxin C1 from Populus tremula x tremuloides. Journal of Biomolecular NMR, 2005, 31, 263-264.	1.6	7
89	The ferredoxin/thioredoxin system: from discovery to molecular structures and beyond., 2005,, 859-866.		2
90	Solution Structure of a Natural CPPC Active Site Variant, the Reduced Form of Thioredoxin h1 from Poplar,. Biochemistry, 2005, 44, 2001-2008.	1.2	24

#	Article	IF	Citations
91	NMR Reveals a Novel Glutaredoxin–Glutaredoxin Interaction Interface. Journal of Molecular Biology, 2005, 353, 629-641.	2.0	24
92	Crystal Structure and Solution NMR Dynamics of a D (Type II) Peroxiredoxin Glutaredoxin and Thioredoxin Dependent:  A New Insight into the Peroxiredoxin Oligomerism. Biochemistry, 2005, 44, 1755-1767.	1.2	50
93	Identification of Plant Glutaredoxin Targets. Antioxidants and Redox Signaling, 2005, 7, 919-929.	2.5	180
94	Consistency in UML and B Multi-view Specifications. Lecture Notes in Computer Science, 2005, , 386-405.	1.0	11
95	Poplar Peroxiredoxin Q. A Thioredoxin-Linked Chloroplast Antioxidant Functional in Pathogen Defense. Plant Physiology, 2004, 134, 1027-1038.	2.3	155
96	Thioredoxin Ch1 of Chlamydomonas reinhardtii displays an unusual resistance toward one-electron oxidation. FEBS Journal, 2004, 271, 3481-3487.	0.2	23
97	Analysis of the proteins targeted by CDSP32, a plastidic thioredoxin participating in oxidative stress responses. Plant Journal, 2004, 41, 31-42.	2.8	143
98	Active site mutagenesis and phospholipid hydroperoxide reductase activity of poplar type II peroxiredoxin. Physiologia Plantarum, 2004, 120, 57-62.	2.6	23
99	Generation of polyclonal antibodies against multiple proteins in a single rabbit and subsequent isolation of the specific immunoglobulins as a tool for proteomics research. Biotechnology and Applied Biochemistry, 2004, 40, 181.	1.4	4
100	Letter to the Editor:1H,13C and15N NMR assignment of the homodimeric poplar phloem type II peroxiredoxin. Journal of Biomolecular NMR, 2004, 30, 105-106.	1.6	6
101	Letter to the Editor:1H,13C and15N resonance assignments of poplar phloem glutaredoxin. Journal of Biomolecular NMR, 2004, 30, 219-220.	1.6	1
102	Letter to the Editor:1H,13C and15N resonance assignment of the reduced form of thioredoxin h1 from Poplar, a CPPC active site variant. Journal of Biomolecular NMR, 2004, 30, 229-230.	1.6	1
103	Isolation of Pea Thioredoxin f Precursor Protein and Characterization of its Biochemical Properties. Photosynthesis Research, 2004, 79, 287-294.	1.6	3
104	Comments on the Contributions of Myroslawa Miginiac-Maslow and Peter Schürmann to the Light-Dependent Redox Regulation of Chloroplastic Enzymes. Photosynthesis Research, 2004, 79, 231-232.	1.6	2
105	Plant glutaredoxins: still mysterious reducing systems. Cellular and Molecular Life Sciences, 2004, 61, 1266-1277.	2.4	201
106	The thioredoxin h system of higher plants. Plant Physiology and Biochemistry, 2004, 42, 265-271.	2.8	127
107	Thioredoxin links redox to the regulation of fundamental processes of plant mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2642-2647.	3.3	306
108	A specific form of thioredoxin h occurs in plant mitochondria and regulates the alternative oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14545-14550.	3.3	241

#	Article	IF	CITATIONS
109	Identification and characterization of a third thioredoxin h in poplar. Plant Physiology and Biochemistry, 2003, 41, 629-635.	2.8	24
110	Characterization of a symbiosis- and auxin-regulated glutathione-S-transferase from Eucalyptus globulus roots. Plant Physiology and Biochemistry, 2003, 41, 611-618.	2.8	8
111	Crystallization and preliminary X-ray studies of the glutaredoxin from poplar in complex with glutathione. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 1043-1045.	2.5	5
112	Effect of pH on the Oxidationâ^'Reduction Properties of Thioredoxins. Biochemistry, 2003, 42, 14877-14884.	1.2	43
113	Characterization of the Redox Properties of Poplar Glutaredoxin. Antioxidants and Redox Signaling, 2003, 5, 15-22.	2.5	33
114	Molecular and catalytic properties of a peroxiredoxin-glutaredoxin hybrid from Neisseria meningitidis. FEBS Letters, 2003, 554, 149-153.	1.3	32
115	Evidence for a subgroup of thioredoxin h that requires GSH/Grx for its reduction. FEBS Letters, 2003, 555, 443-448.	1.3	96
116	Enhancement of Poplar Glutaredoxin Expression by Optimization of the cDNA Sequence. Protein Expression and Purification, 2002, 24, 234-241.	0.6	23
117	Exploring the active site of plant glutaredoxin by site-directed mutagenesis. FEBS Letters, 2002, 511, 145-149.	1.3	65
118	Plant Thioredoxin Gene Expression: Control by Light, Circadian Clock, and Heavy Metals. Methods in Enzymology, 2002, 347, 412-421.	0.4	12
119	Thioredoxins and related proteins in photosynthetic organisms: molecular basis for thiol dependent regulation. Biochemical Pharmacology, 2002, 64, 1065-1069.	2.0	55
120	Isolation and characterization of an extended thioredoxinhfrom poplar. Physiologia Plantarum, 2002, 114, 165-171.	2.6	22
121	Isolation and characterization of a thioredoxin-dependent peroxidase from Chlamydomonas reinhardtii. FEBS Journal, 2002, 269, 272-282.	0.2	105
122	Crystallization and preliminary X-ray data of a bifunctional peroxiredoxin from poplar. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 1501-1503.	2.5	4
123	Redox Control by Dithiolâ€Disulfide Exchange in Plants. Annals of the New York Academy of Sciences, 2002, 973, 508-519.	1.8	20
124	Redox Control by Dithiolâ€Disulfide Exchange in Plants. Annals of the New York Academy of Sciences, 2002, 973, 520-528.	1.8	23
125	The ferredoxin/thioredoxin system: from discovery to molecular structures and beyond. Photosynthesis Research, 2002, 73, 215-222.	1.6	124
126	Plant peroxiredoxins: alternative hydroperoxide scavenging enzymes. Photosynthesis Research, 2002, 74, 259-268.	1.6	75

#	Article	IF	Citations
127	Oxidationâ-'Reduction and Activation Properties of Chloroplast Fructose 1,6-Bisphosphatase with Mutated Regulatory Site. Biochemistry, 2001, 40, 15444-15450.	1.2	33
128	Conformational Change of Arabidopsis thaliana Thioredoxin Reductase after Binding of Pyridine Nucleotide and Thioredoxin. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2001, 56, 188-192.	0.6	0
129	Crystal structure of the wild-type and D30A mutant thioredoxin h of Chlamydomonas reinhardtii and implications for the catalytic mechanism. Biochemical Journal, 2001, 359, 65.	1.7	42
130	Crystal structure of the wild-type and D30A mutant thioredoxin h of Chlamydomonas reinhardtii and implications for the catalytic mechanism. Biochemical Journal, 2001, 359, 65-75.	1.7	66
131	Molecular cloning, characterization and regulation by cadmium of a superoxide dismutase from the ectomycorrhizal fungusPaxillus involutus. FEBS Journal, 2001, 268, 3223-3232.	0.2	74
132	Isolation and Characterization of a New Peroxiredoxin from Poplar Sieve Tubes That Uses Either Glutaredoxin or Thioredoxin as a Proton Donor. Plant Physiology, 2001, 127, 1299-1309.	2.3	204
133	NMR structures of thioredoxinm from the green algaChlamydomonas reinhardtii. Proteins: Structure, Function and Bioinformatics, 2000, 41, 334-349.	1.5	27
134	Isolation and characterization of thioredoxin h from poplar xylem. Plant Physiology and Biochemistry, 2000, 38, 363-369.	2.8	31
135	Title is missing!. Plant and Soil, 2000, 221, 59-65.	1.8	2
136	Homology predicted structure and functional interaction of ferredoxin from the eukaryotic alga Chlamydomonas reinhardtii with nitrite reductase and glutamate synthase. Journal of Biological Inorganic Chemistry, 2000, 5, 713-719.	1.1	23
137	Difference in the Mechanisms of the Cold and Heat Induced Unfolding of Thioredoxin h from Chlamydomonas reinhardtii:  Spectroscopic and Calorimetric Studies. Biochemistry, 2000, 39, 11154-11162.	1.2	35
138	NMR structures of thioredoxin m from the green alga Chlamydomonas reinhardtii. Proteins: Structure, Function and Bioinformatics, 2000, 41, 334-49.	1.5	12
139	Analysis of light/dark synchronization of cell-wall-less Chlamydomonas reinhardtii (Chlorophyta) cells by flow cytometry. European Journal of Phycology, 1999, 34, 279-286.	0.9	1
140	Heavy-Metal Regulation of Thioredoxin Gene Expression inChlamydomonas reinhardtii. Plant Physiology, 1999, 120, 773-778.	2.3	77
141	In Vivo Characterization of a Thioredoxin h Target Protein Defines a New Peroxiredoxin Family. Journal of Biological Chemistry, 1999, 274, 19714-19722.	1.6	213
142	The complex regulation of ferredoxin/thioredoxin-related genes by light and the circadian clock. Planta, 1999, 209, 221-229.	1.6	40
143	The internal Cys-207 of sorghum leaf NADP-malate dehydrogenase can form mixed disulphides with thioredoxin. FEBS Letters, 1999, 444, 165-169.	1.3	41
144	Oxidation-Reduction Properties of Chloroplast Thioredoxins, Ferredoxin:Thioredoxin Reductase, and Thioredoxin f-Regulated Enzymes. Biochemistry, 1999, 38, 5200-5205.	1.2	148

#	Article	IF	Citations
145	Analysis of light/dark synchronization of cell-wall-lessChlamydomonas reinhardtii(Chlorophyta) cells by flow cytometry. European Journal of Phycology, 1999, 34, 279-286.	0.9	24
146	Interaction of thioredoxins with target proteins: Role of particular structural elements and electrostatic properties of thioredoxins in their interplay with 2â€oxoacid dehydrogenase complexes. Protein Science, 1999, 8, 65-74.	3.1	36
147	Interaction of quinones with Arabidopsis thaliana thioredoxin reductase. BBA - Proteins and Proteomics, 1998, 1383, 82-92.	2.1	14
148	Nitroreductase reactions of Arabidopsis thaliana thioredoxin reductase. Biochimica Et Biophysica Acta - Bioenergetics, 1998, 1366, 275-283.	0.5	33
149	Molecular Aspects of Components of the Ferredoxin/Thioredoxin Systems. Advances in Photosynthesis and Respiration, 1998, , 501-514.	1.0	2
150	The Oxidation-Reduction Properties of the Plant Chloroplast Ferredoxin, Thioredoxin, Fructose-1,6-Bisphosphatase System., 1998, , 1943-1946.		0
151	Residue GLU-91 of chlamydomonas reinhardtii ferredoxin is essential for the reaction of ferredoxin-nitrite reductase and ferredoxin-glutamate synthase., 1998,, 1923-1926.		0
152	Residue Glu-91 of Chlamydomonas reinhardtii ferredoxin is essential for electron transfer to ferredoxin-thioredoxin reductase. FEBS Letters, 1997, 400, 293-296.	1.3	49
153	Cysteine-153 is required for redox regulation of pea chloroplast fructose-1,6-bisphosphatase. FEBS Letters, 1997, 401, 143-147.	1.3	95
154	Critical Residues of Chlamydomonas reinhardtii Ferredoxin for Interaction with Nitrite Reductase and Glutamate Synthase Revealed by Site-Directed Mutagenesis. FEBS Journal, 1997, 250, 364-368.	0.2	28
155	NMR Solution Structure of an Oxidised Thioredoxin h from the Eukaryotic Green Alga Chlamydomonas reinhardtii. FEBS Journal, 1997, 243, 374-383.	0.2	51
156	Thioredoxins: structure and function in plant cells. New Phytologist, 1997, 136, 543-570.	3.5	190
157	Light-dependent Activation of NADP-Malate Dehydrogenase: a Complex Process. Functional Plant Biology, 1997, 24, 529.	1.1	33
158	NMR structures of a mitochondrial transit peptide from the green algaChlamydomonas reinhardtii. FEBS Letters, 1996, 391, 203-208.	1.3	18
159	Direct evidence for the different roles of the N- and C-terminal regulatory disulfides of sorghum leaf NADP-malate dehydrogenase in its activation by reduced thioredoxin. FEBS Letters, 1996, 392, 121-124.	1.3	34
160	Crystal Structure of Arabidopsis thaliana NADPH Dependent Thioredoxin Reductase at 2.5 Å Resolution. Journal of Molecular Biology, 1996, 264, 1044-1057.	2.0	96
161	1H,13C,15N-NMR Resonance Assignments of Oxidized Thioredoxin h from the Eukaryotic Green Alga Chlamydomonas reinhardtii Using New Methods based on Two-Dimensional Triple-Resonance NMR Spectroscopy and Computer-Assisted Backbone Assignment. FEBS Journal, 1995, 229, 473-485.	0.2	7
162	Chlamydomonas reinhardtii thioredoxins: structure of the genes coding for the chloroplastic m and cytosolic h isoforms; expression in Escherichia coli of the recombinant proteins, purification and biochemical properties. Plant Molecular Biology, 1995, 28, 487-503.	2.0	65

#	Article	IF	Citations
163	[25] Analysis and manipulation of target enzymes for thioredoxin control. Methods in Enzymology, 1995, 252, 240-252.	0.4	12
164	Highâ€Level Expression of Recombinant Pea Chloroplast Fructoseâ€1,6â€Bisphosphatase and Mutagenesis of Its Regulatory Site. FEBS Journal, 1995, 229, 675-681.	0.2	19
165	1H,13C,15N-NMR Resonance Assignments of Oxidized Thioredoxin h from the Eukaryotic Green Alga Chlamydomonas reinhardtii Using New Methods based on Two-Dimensional Triple-Resonance NMR Spectroscopy and Computer-Assisted Backbone Assignment. FEBS Journal, 1995, 229, 473-485.	0.2	21
166	High-Level Expression of Recombinant Pea Chloroplast Fructose-1,6-Bisphosphatase and Mutagenesis of Its Regulatory Site. FEBS Journal, 1995, 229, 675-681.	0.2	45
167	Purification and characterization of pea thioredoxin f expressed in Escherichia coli. Plant Molecular Biology, 1994, 26, 225-234.	2.0	49
168	Thioredoxin and metabolic regulation. Seminars in Cell Biology, 1994, 5, 285-293.	3.5	34
169	Arabidopsis thaliana NAPHP Thioredoxin Reductase. Journal of Molecular Biology, 1994, 235, 1357-1363.	2.0	135
170	NMR structures of ferredoxin chloroplastic transit peptide fromChlamydomonas reinhardtiipromoted by trifluoroethanol in aqueous solution. FEBS Letters, 1994, 343, 261-266.	1.3	41
171	Secondary Structure and Protein Folding of Recombinant Chloroplastic Thioredoxin Ch2 from the Green Alga Chlamydomonas reinhardtii as Determined by 1H NMR1. Journal of Biochemistry, 1993, 114, 421-431.	0.9	28
172	PCR cloning of a nucleotidic sequence coding for the mature part of Chlamydomonas reinhardtiithicredoxin Ch2. Nucleic Acids Research, 1992, 20, 617-617.	6.5	16
173	Isolation of a cDNA fragment coding forChlamydomonas reinhardtiiferredoxin and expression of the recombinant protein inEscherichia coli. FEBS Letters, 1992, 310, 240-245.	1.3	15
174	Biochemical characterization of thioredoxin 1 from Dictyostelium discoideum. FEBS Journal, 1992, 209, 643-649.	0.2	18
175	Thiol Dependent Enzyme Light Regulation: A Process Dependent on the Structure of Thioredoxins and Target Enzymes. , 1992, , 659-666.		0
176	Light Regulation of Sorghum Leaf NADP-Malate Dehydrogenase. II-Biochemical Characterization of Cysteine Mutants., 1992,, 705-708.		1
177	Mutation of a negatively charged amino acid in thioredoxin modifies its reactivity with chloroplastic enzymes. FEBS Journal, 1991, 196, 287-294.	0.2	57
178	Characterization and primary structure of a second thioredoxin from the green alga, Chlamydomonas reinhardtii. FEBS Journal, 1991, 198, 505-512.	0.2	44
179	Properties of recombinant NADP-malate dehydrogenases from Sorghum vulgare leaves expressed in Escherichia coli cells. FEBS Journal, 1991, 199, 47-51.	0.2	22
180	The ferredoxin-thioredoxin system of a green alga, Chlamydomonas reinhardtii. Planta, 1990, 180, 341-351.	1.6	21

#	Article	IF	CITATIONS
181	The ferredoxin-thioredoxin system of a green alga, Chlamydomonas reinhardtii. Planta, 1990, 180, 341-351.	1.6	42
182	Purification, characterization, and complete amino acid sequence of a thioredoxin from a green alga, Chlamydomonas reinhardtii. Archives of Biochemistry and Biophysics, 1990, 280, 112-121.	1.4	45
183	Separation by high-performance liquid chromatography of the ferredoxinâ€"thioredoxin system proteins. Journal of Chromatography A, 1989, 477, 305-314.	1.8	7
184	Purification, properties and complete amino acid sequence of the ferredoxin from a green alga, Chlamydomonas reinhardtii. FEBS Journal, 1988, 172, 405-412.	0.2	52
185	Identification of a cDNA clone for sorghum leaf malate dehydrogenase (NADP). Light-dependent mRNA accumulation. FEBS Journal, 1988, 174, 497-501.	0.2	23
186	On the specificity of pig adrenal ferredoxin (adrenodoxin) and spinach ferredoxin in electron-transfer reactions. FEBS Journal, 1988, 174, 629-635.	0.2	6
187	Further evidence for a role of sulfhydryls in the thioredoxin dependent activation of corn NADP-malate dehydrogenase. FEBS Letters, 1986, 209, 87-91.	1.3	6
188	Structural, immunological and kinetic comparisons of NADP-dependent malate dehydrogenases from spinach (C3) and corn (C4) chloroplasts. FEBS Journal, 1986, 154, 587-595.	0.2	36
189	Enzyme regulation in C4 photosynthesis: Mechanism of activation of NADP-malate dehydrogenase by reduced thioredoxin. Archives of Biochemistry and Biophysics, 1984, 228, 170-178.	1.4	61
190	Ferredoxin-thioredoxin Reductase: Purification and Substrate Requirements. , 1984, , 533-536.		5
191	Glutamate synthase in rice roots. Studies on the electron donor specificity. Phytochemistry, 1983, 22, 1543-1546.	1.4	18
192	Improved in vitro light activation and assay systems for two spinach chloroplast enzymes. Biochimica Et Biophysica Acta - Biomembranes, 1979, 569, 309-312.	1.4	42
193	Evidence for the existence of several enzyme-specific thioredoxins in plants. FEBS Letters, 1978, 96, 243-246.	1.3	127