Karam S Aboudehen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9563135/publications.pdf

Version: 2024-02-01

20 papers

732 citations

566801 15 h-index 752256 20 g-index

20 all docs 20 docs citations

times ranked

20

1067 citing authors

#	Article	IF	CITATIONS
1	Regulation of mTOR signaling by long non-coding RNA. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194449.	0.9	16
2	Interstitial microRNA miR-214 attenuates inflammation and polycystic kidney disease progression. JCI Insight, 2020, 5 , .	2.3	39
3	Long noncoding RNA Hoxb3os is dysregulated in autosomal dominant polycystic kidney disease and regulates mTOR signaling. Journal of Biological Chemistry, 2018, 293, 9388-9398.	1.6	32
4	Transcription factor ${\sf HNF1\hat{l}^2}$ regulates expression of the calcium-sensing receptor in the thick ascending limb of the kidney. American Journal of Physiology - Renal Physiology, 2018, 315, F27-F35.	1.3	18
5	Mechanism of Fibrosis in HNF1B-Related Autosomal Dominant Tubulointerstitial Kidney Disease. Journal of the American Society of Nephrology: JASN, 2018, 29, 2493-2509.	3.0	47
6	microRNA-17 family promotes polycystic kidney disease progression through modulation of mitochondrial metabolism. Nature Communications, 2017, 8, 14395.	5 . 8	147
7	Hepatocyte Nuclear Factor–1β Regulates Urinary Concentration and Response to Hypertonicity. Journal of the American Society of Nephrology: JASN, 2017, 28, 2887-2900.	3.0	31
8	Loss of transcriptional activation of the potassium channel Kir $5.1\ by\ HNF1\hat{l}^2$ drives autosomal dominant tubulointerstitial kidney disease. Kidney International, 2017, 92, 1145-1156.	2.6	41
9	MicroRNA-21 Aggravates Cyst Growth in a Model of Polycystic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2016, 27, 2319-2330.	3.0	62
10	Transcription Factor Hepatocyte Nuclear Factor–1β Regulates Renal Cholesterol Metabolism. Journal of the American Society of Nephrology: JASN, 2016, 27, 2408-2421.	3.0	23
11	Transcription Factor Hepatocyte Nuclear Factor- $1^{\hat{1}^2}$ (HNF- $1^{\hat{1}^2}$) Regulates MicroRNA-200 Expression through a Long Noncoding RNA. Journal of Biological Chemistry, 2015, 290, 24793-24805.	1.6	42
12	Tissue-specific regulation of the mouse <i>Pkhd1</i> (ARPKD) gene promoter. American Journal of Physiology - Renal Physiology, 2014, 307, F356-F368.	1.3	25
13	The MDM2–p53 pathway: multiple roles in kidney development. Pediatric Nephrology, 2014, 29, 621-627.	0.9	19
14	Mechanisms of p53 activation and physiological relevance in the developing kidney. American Journal of Physiology - Renal Physiology, 2012, 302, F928-F940.	1.3	11
15	A p53-Pax2 Pathway in Kidney Development: Implications for Nephrogenesis. PLoS ONE, 2012, 7, e44869.	1.1	37
16	Tight regulation of p53 activity by Mdm2 is required for ureteric bud growth and branching. Developmental Biology, 2011, 353, 354-366.	0.9	30
17	Bradykinin B2 receptor null mice harboring a Ser23-to-Ala substitution in the p53 gene are protected from renal dysgenesis. American Journal of Physiology - Renal Physiology, 2008, 295, F1404-F1413.	1.3	7
18	Transcriptional control of terminal nephron differentiation. American Journal of Physiology - Renal Physiology, 2008, 294, F1273-F1278.	1.3	27

#	Article	IF	CITATIONS
19	Sideâ€Chain Conformational Restriction in Templateâ€Competitive Inhibitors of E. coliDNA Polymerase I Klenow Fragment: Synthesis, Structural Characterization and Inhibition Activity. Nucleosides, Nucleotides and Nucleic Acids, 2004, 23, 1751-1765.	0.4	1
20	Adiponectin Responses to Continuous and Progressively Intense Intermittent Exercise. Medicine and Science in Sports and Exercise, 2003, 35, 1320-1325.	0.2	77