Rishikesh Pandey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9563091/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vibrational spectroscopy for decoding cancer microbiota interactions: Current evidence and future perspective. Seminars in Cancer Biology, 2022, 86, 743-752.	9.6	11
2	Injectable amnion hydrogel-mediated delivery of adipose-derived stem cells for osteoarthritis treatment. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119,	7.1	39
3	High-throughput digital pathology <i>via</i> a handheld, multiplexed, and Al-powered ptychographic whole slide scanner. Lab on A Chip, 2022, 22, 2657-2670.	6.0	18
4	Coarse Raman and optical diffraction tomographic imaging enable label-free phenotyping of isogenic breast cancer cells of varying metastatic potential. Biosensors and Bioelectronics, 2021, 175, 112863.	10.1	24
5	Artificialâ€Intelligenceâ€Enabled Reagentâ€Free Imaging Hematology Analyzer. Advanced Intelligent Systems, 2021, 3, 2000277.	6.1	11
6	Artificialâ€Intelligenceâ€Enabled Reagentâ€Free Imaging Hematology Analyzer. Advanced Intelligent Systems, 2021, 3, 2170060.	6.1	2
7	Raman and quantitative phase imaging allow morpho-molecular recognition of malignancy and stages of B-cell acute lymphoblastic leukemia. Biosensors and Bioelectronics, 2021, 190, 113403.	10.1	19
8	Advancing Raman spectroscopy from research to clinic: Translational potential and challenges. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 260, 119957.	3.9	43
9	Identification and Staging of B-Cell Acute Lymphoblastic Leukemia Using Quantitative Phase Imaging and Machine Learning. ACS Sensors, 2020, 5, 3281-3289.	7.8	21
10	Emerging trends in biomedical imaging and disease diagnosis using Raman spectroscopy. , 2020, , 623-652.		4
11	Preparation and characterization of amnion hydrogel and its synergistic effect with adipose derived stem cells towards IL1β activated chondrocytes. Scientific Reports, 2020, 10, 18751.	3.3	24
12	Study of MnO2-Graphene Oxide nanocomposites for supercapacitor applications. MRS Advances, 2019, 4, 777-782.	0.9	9
13	Reagent-Free and Rapid Assessment of T Cell Activation State Using Diffraction Phase Microscopy and Deep Learning. Analytical Chemistry, 2019, 91, 3405-3411.	6.5	22
14	Integration of diffraction phase microscopy and Raman imaging for labelâ€free morphoâ€molecular assessment of live cells. Journal of Biophotonics, 2019, 12, e201800291.	2.3	15
15	Polyindole/cadmium sulphide nanocomposite based turn-on, multi-ion fluorescence sensor for detection of Cr3+, Fe3+ and Sn2+ ions. Sensors and Actuators B: Chemical, 2018, 269, 195-202.	7.8	72
16	Labelâ€free spectrochemical probe for determination of hemoglobin glycation in clinical blood samples. Journal of Biophotonics, 2018, 11, e201700397.	2.3	7
17	Differential diagnosis of otitis media with effusion using labelâ€free Raman spectroscopy: A pilot study. Journal of Biophotonics, 2018, 11, e201700259.	2.3	14
18	Raman Enhancement of Blood Constituent Proteins Using Graphene. ACS Photonics, 2018, 5, 2978-2982.	6.6	29

RISHIKESH PANDEY

#	Article	IF	CITATIONS
19	Noninvasive Monitoring of Blood Glucose with Raman Spectroscopy. Accounts of Chemical Research, 2017, 50, 264-272.	15.6	180
20	Ticagrelor Removal From Human Blood. JACC Basic To Translational Science, 2017, 2, 135-145.	4.1	38
21	An overview on manufactured nanoparticles in plants: Uptake, translocation, accumulation and phytotoxicity. Plant Physiology and Biochemistry, 2017, 110, 2-12.	5.8	579
22	Leveraging the Attributes of Mucor hiemalis-Derived Silver Nanoparticles for a Synergistic Broad-Spectrum Antimicrobial Platform. Frontiers in Microbiology, 2016, 7, 1984.	3.5	269
23	Engineering tailored nanoparticles with microbes: <i>quo vadis</i> ?. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 316-330.	6.1	389
24	Discerning the differential molecular pathology of proliferative middle ear lesions using Raman spectroscopy. Scientific Reports, 2015, 5, 13305.	3.3	30
25	Multi-color reflectance imaging of middle ear pathology in vivo. Analytical and Bioanalytical Chemistry, 2015, 407, 3277-3283.	3.7	21
26	Facile Algae-Derived Route to Biogenic Silver Nanoparticles: Synthesis, Antibacterial, and Photocatalytic Properties. Langmuir, 2015, 31, 11605-11612.	3.5	479
27	Emerging trends in optical sensing of glycemic markers for diabetes monitoring. TrAC - Trends in Analytical Chemistry, 2015, 64, 100-108.	11.4	44
28	Multiwavelength Fluorescence Otoscope for Video-Rate Chemical Imaging of Middle Ear Pathology. Analytical Chemistry, 2014, 86, 10454-10460.	6.5	22
29	Spectroscopic approach for dynamic bioanalyte tracking with minimal concentration information.	3.3	38