
Haishan Yao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9562889/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glia-to-Neuron Conversion by CRISPR-CasRx Alleviates Symptoms of Neurological Disease in Mice. Cell, 2020, 181, 590-603.e16.	28.9	306
2	Oxytocin mediates early experience–dependent cross-modal plasticity in the sensory cortices. Nature Neuroscience, 2014, 17, 391-399.	14.8	169
3	Single-neuron projectome of mouse prefrontal cortex. Nature Neuroscience, 2022, 25, 515-529.	14.8	87
4	Control of response reliability by parvalbumin-expressing interneurons in visual cortex. Nature Communications, 2015, 6, 6802.	12.8	61
5	Clustered Organization of Neurons with Similar Extra-Receptive Field Properties in the Primary Visual Cortex. Neuron, 2002, 35, 547-553.	8.1	52
6	Orbitofrontal control of visual cortex gain promotes visual associative learning. Nature Communications, 2020, 11, 2784.	12.8	39
7	Contrast-dependent orientation discrimination in the mouse. Scientific Reports, 2015, 5, 15830.	3.3	35
8	Contrastâ€dependent <scp>OFF</scp> â€dominance in cat primary visual cortex facilitates discrimination of stimuli with natural contrast statistics. European Journal of Neuroscience, 2014, 39, 2060-2070.	2.6	23
9	Cumulative latency advance underlies fast visual processing in desynchronized brain state. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 515-520.	7.1	18
10	Unconscious processing of invisible visual stimuli. Scientific Reports, 2016, 6, 38917.	3.3	18
11	Control of adaptive action selection by secondary motor cortex during flexible visual categorization. ELife, 2020, 9, .	6.0	17
12	The Spatiotemporal Frequency Tuning of LGN Receptive Field Facilitates Neural Discrimination of Natural Stimuli. Journal of Neuroscience, 2009, 29, 11409-11416.	3.6	16
13	Altered visual cortical processing in a mouse model of MECP2 duplication syndrome. Scientific Reports, 2017, 7, 6468.	3.3	16
14	Duality in Binocular Rivalry: Distinct Sensitivity of Percept Sequence and Percept Duration to Imbalance between Monocular Stimuli. PLoS ONE, 2009, 4, e6912.	2.5	16
15	Direct and indirect pathway neurons in ventrolateral striatum differentially regulate licking movement and nigral responses. Cell Reports, 2021, 37, 109847.	6.4	13
16	Sensitivity of V1 Neurons to Direction of Spectral Motion. Cerebral Cortex, 2011, 21, 964-973.	2.9	8
17	Stimulus-Entrained Oscillatory Activity Propagates as Waves from Area 18 to 17 in Cat Visual Cortex. PLoS ONE, 2012, 7, e41960.	2.5	8
18	Phase-specific Surround suppression in Mouse Primary Visual Cortex Correlates with Figure Detection Behavior Based on Phase Discontinuity. Neuroscience, 2018, 379, 359-374.	2.3	8

#	Article	IF	CITATIONS
19	Visual neuroscience research in China. Science China Life Sciences, 2010, 53, 363-373.	4.9	7
20	Short-Term Influence of Recent Trial History on Perceptual Choice Changes with Stimulus Strength. Neuroscience, 2019, 409, 1-15.	2.3	7
21	Modification of Visual Cortical Receptive Field Induced by Natural Stimuli. Cerebral Cortex, 2013, 23, 1923-1932.	2.9	5