## Joanne L Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9562518/publications.pdf Version: 2024-02-01



IOANNE LIONES

| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The window of therapeutic opportunity in multiple sclerosis. Journal of Neurology, 2006, 253, 98-108.                                                                                                                      | 3.6  | 469       |
| 2  | Association of Initial Disease-Modifying Therapy With Later Conversion to Secondary Progressive Multiple Sclerosis. JAMA - Journal of the American Medical Association, 2019, 321, 175.                                    | 7.4  | 336       |
| 3  | Lymphocyte homeostasis following therapeutic lymphocyte depletion in multiple sclerosis. European<br>Journal of Immunology, 2005, 35, 3332-3342.                                                                           | 2.9  | 279       |
| 4  | Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science, 2022, 376, eabl5197.                                                                                                                | 12.6 | 265       |
| 5  | IL-21 drives secondary autoimmunity in patients with multiple sclerosis, following therapeutic<br>lymphocyte depletion with alemtuzumab (Campath-1H). Journal of Clinical Investigation, 2009, 119,<br>2052-61.            | 8.2  | 257       |
| 6  | Alemtuzumab treatment of multiple sclerosis: long-term safety and efficacy. Journal of Neurology,<br>Neurosurgery and Psychiatry, 2015, 86, 208-215.                                                                       | 1.9  | 208       |
| 7  | B-Cell Reconstitution and BAFF After Alemtuzumab (Campath-1H) Treatment of Multiple Sclerosis.<br>Journal of Clinical Immunology, 2010, 30, 99-105.                                                                        | 3.8  | 207       |
| 8  | Human autoimmunity after lymphocyte depletion is caused by homeostatic T-cell proliferation.<br>Proceedings of the National Academy of Sciences of the United States of America, 2013, 110,<br>20200-20205.                | 7.1  | 185       |
| 9  | Distinct microbial and immune niches of the human colon. Nature Immunology, 2020, 21, 343-353.                                                                                                                             | 14.5 | 175       |
| 10 | Non-myeloablative autologous haematopoietic stem cell transplantation expands regulatory cells and<br>depletes IL-17 producing mucosal-associated invariant T cells in multiple sclerosis. Brain, 2013, 136,<br>2888-2903. | 7.6  | 174       |
| 11 | Long term lymphocyte reconstitution after alemtuzumab treatment of multiple sclerosis. Journal of<br>Neurology, Neurosurgery and Psychiatry, 2012, 83, 298-304.                                                            | 1.9  | 171       |
| 12 | Improvement in disability after alemtuzumab treatment of multiple sclerosis is associated with neuroprotective autoimmunity. Brain, 2010, 133, 2232-2247.                                                                  | 7.6  | 152       |
| 13 | Immune competence after alemtuzumab treatment of multiple sclerosis. Neurology, 2013, 81, 872-876.                                                                                                                         | 1.1  | 120       |
| 14 | Clinical relevance of serum antibodies to extracellular <i>N</i> -methyl-d-aspartate receptor epitopes.<br>Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 708-713.                                           | 1.9  | 97        |
| 15 | Secondary autoimmune diseases following alemtuzumab therapy for multiple sclerosis. Expert Review of Neurotherapeutics, 2012, 12, 335-341.                                                                                 | 2.8  | 86        |
| 16 | A Novel Strategy To Reduce the Immunogenicity of Biological Therapies. Journal of Immunology, 2010, 185, 763-768.                                                                                                          | 0.8  | 65        |
| 17 | Discovery of CD80 and CD86 as recent activation markers on regulatory T cells by protein-RNA single-cell analysis. Genome Medicine, 2020, 12, 55.                                                                          | 8.2  | 61        |
| 18 | Peripheral innate immune and bacterial signals relate to clinical heterogeneity in Parkinson's disease.<br>Brain, Behavior, and Immunity, 2020, 87, 473-488.                                                               | 4.1  | 58        |

JOANNE L JONES

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Alemtuzumab-Induced Thyroid Dysfunction Exhibits Distinctive Clinical and Immunological Features.<br>Journal of Clinical Endocrinology and Metabolism, 2018, 103, 3010-3018.                                                    | 3.6  | 57        |
| 20 | Accelerated lymphocyte recovery after alemtuzumab does not predict multiple sclerosis activity.<br>Neurology, 2014, 82, 2158-2164.                                                                                              | 1.1  | 52        |
| 21 | Mode of action and clinical studies with alemtuzumab. Experimental Neurology, 2014, 262, 37-43.                                                                                                                                 | 4.1  | 51        |
| 22 | Neonatal and adult recent thymic emigrants produce IL-8 and express complement receptors CR1 and CR2. JCI Insight, 2017, 2, .                                                                                                   | 5.0  | 46        |
| 23 | 2019 European Thyroid Association Guidelines on the Management of Thyroid Dysfunction following<br>Immune Reconstitution Therapy. European Thyroid Journal, 2019, 8, 173-185.                                                   | 2.4  | 44        |
| 24 | Immunological considerations and challenges for regenerative cellular therapies. Communications<br>Biology, 2021, 4, 798.                                                                                                       | 4.4  | 44        |
| 25 | Safety and efficacy of bexarotene in patients with relapsing-remitting multiple sclerosis (CCMR One): a randomised, double-blind, placebo-controlled, parallel-group, phase 2a study. Lancet Neurology, The, 2021, 20, 709-720. | 10.2 | 44        |
| 26 | Predicting autoimmunity after alemtuzumab treatment of multiple sclerosis. Journal of Neurology,<br>Neurosurgery and Psychiatry, 2014, 85, 795-798.                                                                             | 1.9  | 42        |
| 27 | New treatment strategies in multiple sclerosis. Experimental Neurology, 2010, 225, 34-39.                                                                                                                                       | 4.1  | 39        |
| 28 | Alemtuzumab use in neuromyelitis optica spectrum disorders: a brief case series. Journal of Neurology, 2016, 263, 25-29.                                                                                                        | 3.6  | 39        |
| 29 | Multiple sclerosis risk variants alter expression of co-stimulatory genes in B cells. Brain, 2018, 141, 786-796.                                                                                                                | 7.6  | 39        |
| 30 | Extracellular Lactate: A Novel Measure of T Cell Proliferation. Journal of Immunology, 2018, 200, 1220-1226.                                                                                                                    | 0.8  | 39        |
| 31 | Campath-1H Treatment of Multiple Sclerosis. Neurodegenerative Diseases, 2008, 5, 27-31.                                                                                                                                         | 1.4  | 34        |
| 32 | 'Radiologically compatible CLIPPERS' may conceal a number of pathologies. Brain, 2011, 134, e187-e187.                                                                                                                          | 7.6  | 33        |
| 33 | Monocyte Function in Parkinson's Disease and the Impact of Autologous Serum on Phagocytosis.<br>Frontiers in Neurology, 2018, 9, 870.                                                                                           | 2.4  | 33        |
| 34 | Hemophagocytic lymphohistiocytosis in 2 patients with multiple sclerosis treated with alemtuzumab.<br>Neurology, 2018, 90, 849-851.                                                                                             | 1.1  | 32        |
| 35 | Neuroanatomical substrates of generalized brain dysfunction in COVID-19. Intensive Care Medicine, 2021, 47, 116-118.                                                                                                            | 8.2  | 31        |
| 36 | Sarcoidosis following alemtuzumab treatment for multiple sclerosis. Multiple Sclerosis Journal, 2018, 24, 1779-1782.                                                                                                            | 3.0  | 25        |

JOANNE L JONES

| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Complex Autoantibody Responses Occur following Moderate to Severe Traumatic Brain Injury.<br>Journal of Immunology, 2021, 207, 90-100.                                                               | 0.8 | 24        |
| 38 | Therapeutically expanded human regulatory T-cells are super-suppressive due to HIF1A induced expression of CD73. Communications Biology, 2021, 4, 1186.                                              | 4.4 | 19        |
| 39 | Keratinocyte growth factor impairs human thymic recovery from lymphopenia. JCI Insight, 2019, 4, .                                                                                                   | 5.0 | 16        |
| 40 | Autoimmunity and long-term safety and efficacy of alemtuzumab for multiple sclerosis: Benefit/risk following review of trial and post-marketing data. Multiple Sclerosis Journal, 2022, 28, 842-846. | 3.0 | 13        |
| 41 | Imaging intralesional heterogeneity of sodium concentration in multiple sclerosis: Initial evidence from 23 Na-MRI. Journal of the Neurological Sciences, 2018, 387, 111-114.                        | 0.6 | 10        |
| 42 | Transcript specific regulation of expression influences susceptibility to multiple sclerosis. European<br>Journal of Human Genetics, 2020, 28, 826-834.                                              | 2.8 | 10        |
| 43 | The MS Remyelinating Drug Bexarotene (an RXR Agonist) Promotes Induction of Human Tregs and Suppresses Th17 Differentiation In Vitro. Frontiers in Immunology, 2021, 12, 712241.                     | 4.8 | 9         |
| 44 | Detection limit of 89Zr-labeled T cells for cellular tracking: an in vitro imaging approach using clinical PET/CT and PET/MRI. EJNMMI Research, 2020, 10, 82.                                        | 2.5 | 9         |
| 45 | Increased THEMIS First Exon Usage in CD4+ T-Cells Is Associated with a Genotype that Is Protective against Multiple Sclerosis. PLoS ONE, 2016, 11, e0158327.                                         | 2.5 | 9         |
| 46 | Periventricular magnetisation transfer ratio abnormalities in multiple sclerosis improve after<br>alemtuzumab. Multiple Sclerosis Journal, 2020, 26, 1093-1101.                                      | 3.0 | 6         |
| 47 | A case of anaphylaxis to alemtuzumab. Journal of Neurology, 2019, 266, 780-781.                                                                                                                      | 3.6 | 6         |
| 48 | Severe paradoxical disease activation following alemtuzumab treatment for multiple sclerosis.<br>Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .                                        | 6.0 | 5         |
| 49 | The immunogenicity of midbrain dopaminergic neurons and the implications for neural grafting trials<br>in Parkinson's disease. Neuronal Signaling, 2021, 5, NS20200083.                              | 3.2 | 3         |
| 50 | Predicting Autoimmunity Following Treatment of Multiple Sclerosis with Alemtuzumab. Clinical<br>Immunology, 2010, 135, S103.                                                                         | 3.2 | 2         |
| 51 | FIRST USE OF ALEMTUZUMAB IN BALO CONCENTRIC SCLEROSIS: A CASE REPORT. Journal of Neurology,<br>Neurosurgery and Psychiatry, 2013, 84, e2.81-e2.                                                      | 1.9 | 2         |
| 52 | Meeting abstracts from the 64th British Thyroid Association Annual Meeting. Thyroid Research, 2017,<br>10, .                                                                                         | 1.5 | 2         |
| 53 | Acute posterior multifocal placoid pigment epitheliopathy after alemtuzumab treatment for relapsing–remitting multiple sclerosis. Journal of Neurology, 2019, 266, 1539-1540.                        | 3.6 | 2         |
| 54 | Progressive multifocal leucoencephalopathy with Behçet's disease: an insight into pathophysiology.<br>Rheumatology, 2017, 56, kew404.                                                                | 1.9 | 1         |

| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The yin and yang of intracellular reactive oxygen species following T-cell activation. Brain, 2021, 144, 2909-2911.                                                                                                                              | 7.6 | 1         |
| 56 | LONG-TERM SAFETY OF ALEMTUZUMAB IN RELAPSING-REMITTING MULTIPLE SCLEROSIS: PREGNANCY AND INFECTION DATA FROM A COHORT OF PATIENTS ON OPEN LABEL STUDIES IN CAMBRIDGE. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, e4.15-e4.     | 1.9 | 0         |
| 57 | Targeting CD52 for the Treatment of Multiple Sclerosis. , 2013, , 385-399.                                                                                                                                                                       |     | 0         |
| 58 | Graves' disease with fluctuating thyroid status and hypothyroidism with positive anti-TSH receptor<br>antibody levels - distinctive autoimmune side-effects following alemtuzumab therapy for multiple<br>sclerosis. Endocrine Abstracts, 0, , . | 0.0 | 0         |