
Nuno Moreira Santarém

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9562459/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multitarget, Selective Compound Design Yields Potent Inhibitors of a Kinetoplastid Pteridine Reductase 1. Journal of Medicinal Chemistry, 2022, 65, 9011-9033.	2.9	8
2	Toward Chemical Validation of Leishmania infantum Ribose 5-Phosphate Isomerase as a Drug Target. Antimicrobial Agents and Chemotherapy, 2021, 65, e0189220.	1.4	4
3	Visceral Dissemination of Mucocutaneous Leishmaniasis in a Kidney Transplant Recipient. Pathogens, 2021, 10, 18.	1.2	4
4	Identification of a 2,4-diaminopyrimidine scaffold targeting Trypanosoma brucei pteridine reductase 1 from the LIBRA compound library screening campaign. European Journal of Medicinal Chemistry, 2020, 189, 112047.	2.6	8
5	The Diverse Piscidin Repertoire of the European Sea Bass (Dicentrarchus labrax): Molecular Characterization and Antimicrobial Activities. International Journal of Molecular Sciences, 2020, 21, 4613.	1.8	20
6	Challenges in the serological evaluation of dogs clinically suspect for canine leishmaniasis. Scientific Reports, 2020, 10, 3099.	1.6	11
7	The Use of Specific Serological Biomarkers to Detect CaniLeish Vaccination in Dogs. Frontiers in Veterinary Science, 2019, 6, 373.	0.9	6
8	Discovery of a benzothiophene-flavonol halting miltefosine and antimonial drug resistance in Leishmania parasites through the application of medicinal chemistry, screening and genomics. European Journal of Medicinal Chemistry, 2019, 183, 111676.	2.6	18
9	SAR Studies and Biological Characterization of a Chromen-4-one Derivative as an Anti- <i>Trypanosoma brucei</i> Agent. ACS Medicinal Chemistry Letters, 2019, 10, 528-533.	1.3	5
10	Enhancement of Benzothiazoles as Pteridine Reductase-1 Inhibitors for the Treatment of Trypanosomatidic Infections. Journal of Medicinal Chemistry, 2019, 62, 3989-4012.	2.9	21
11	Quantification of Leishmania Parasites in Murine Models of Visceral Infection. Methods in Molecular Biology, 2019, 1971, 289-301.	0.4	5
12	In Vitro Infections of Macrophage-Like Cell Lines with Leishmania infantum for Drug Screening. Methods in Molecular Biology, 2019, 1971, 265-277.	0.4	5
13	Accelerating Drug Discovery Efforts for Trypanosomatidic Infections Using an Integrated Transnational Academic Drug Discovery Platform. SLAS Discovery, 2019, 24, 346-361.	1.4	18
14	Murine infection with bioluminescent Leishmania infantum axenic amastigotes applied to drug discovery. Scientific Reports, 2019, 9, 18989.	1.6	11
15	Potential Drug Targets in the Pentose Phosphate Pathway of Trypanosomatids. Current Medicinal Chemistry, 2019, 25, 5239-5265.	1.2	13
16	Aryl thiosemicarbazones for the treatment of trypanosomatidic infections. European Journal of Medicinal Chemistry, 2018, 146, 423-434.	2.6	27
17	More than just exosomes: distinct <i>Leishmania infantum</i> extracellular products potentiate the establishment of infection. Journal of Extracellular Vesicles, 2018, 7, 1541708.	5.5	25
18	Scaffolds and Biological Targets Avenue to Fight Against Drug Resistance in Leishmaniasis. Annual Reports in Medicinal Chemistry, 2018, 51, 39-95.	0.5	4

#	Article	IF	CITATIONS
19	Biomarkers in Leishmaniasis: From Basic Research to Clinical Application. , 2018, , .		1
20	The use of Escherichia coli total antigens as a complementary approach to address seropositivity to Leishmania antigens in canine leishmaniosis. Parasitology, 2017, 144, 1384-1393.	0.7	9
21	Methoxylated 2'-hydroxychalcones as antiparasitic hit compounds. European Journal of Medicinal Chemistry, 2017, 126, 1129-1135.	2.6	20
22	Exploiting the 2-Amino-1,3,4-thiadiazole Scaffold To Inhibit Trypanosoma brucei Pteridine Reductase in Support of Early-Stage Drug Discovery. ACS Omega, 2017, 2, 5666-5683.	1.6	24
23	Chroman-4-One Derivatives Targeting Pteridine Reductase 1 and Showing Anti-Parasitic Activity. Molecules, 2017, 22, 426.	1.7	39
24	Leishmania infantum Exoproducts Inhibit Human Invariant NKT Cell Expansion and Activation. Frontiers in Immunology, 2017, 8, 710.	2.2	9
25	Profiling of Flavonol Derivatives for the Development of Antitrypanosomatidic Drugs. Journal of Medicinal Chemistry, 2016, 59, 7598-7616.	2.9	41
26	Disclosing the essentiality of ribose-5-phosphate isomerase B in Trypanosomatids. Scientific Reports, 2016, 6, 26937.	1.6	27
27	Leishmania infantum Asparagine Synthetase A Is Dispensable for Parasites Survival and Infectivity. PLoS Neglected Tropical Diseases, 2016, 10, e0004365.	1.3	11
28	Biological properties of extracellular vesicles and their physiological functions. Journal of Extracellular Vesicles, 2015, 4, 27066.	5.5	3,973
29	Ribose 5-Phosphate Isomerase B Knockdown Compromises Trypanosoma brucei Bloodstream Form Infectivity. PLoS Neglected Tropical Diseases, 2015, 9, e3430.	1.3	19
30	Deception and Manipulation: The Arms of Leishmania, a Successful Parasite. Frontiers in Immunology, 2014, 5, 480.	2.2	80
31	The impact of distinct culture media in <i>Leishmania infantum</i> biology and infectivity. Parasitology, 2014, 141, 192-205.	0.7	28
32	Cutaneous leishmaniosis in a horse from northern Portugal. Veterinary Parasitology, 2014, 200, 189-192.	0.7	20
33	Exoproteome dynamics in Leishmania infantum. Journal of Proteomics, 2013, 84, 106-118.	1.2	44
34	Knockdown of Asparagine Synthetase A Renders Trypanosoma brucei Auxotrophic to Asparagine. PLoS Neglected Tropical Diseases, 2013, 7, e2578.	1.3	15
35	Impact of Continuous Axenic Cultivation in Leishmania infantum Virulence. PLoS Neglected Tropical Diseases, 2012, 6, e1469.	1.3	88
36	Activation of Phosphatidylinositol 3-Kinase/Akt and Impairment of Nuclear Factor-κB. American Journal of Pathology, 2010, 177, 2898-2911.	1.9	48

#	Article	IF	CITATIONS
37	Application of an Improved Enzyme-Linked Immunosorbent Assay Method for Serological Diagnosis of Canine Leishmaniasis. Journal of Clinical Microbiology, 2010, 48, 1866-1874.	1.8	38
38	Heme as a source of iron to Leishmania infantum amastigotes. Acta Tropica, 2009, 109, 131-135.	0.9	48
39	Recognition of Leishmania Parasites by Innate Immunity. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry, 2009, 9, 106-127.	0.5	5
40	Evaluation of Leishmania Species Reactivity in Human Serologic Diagnosis of Leishmaniasis. American Journal of Tropical Medicine and Hygiene, 2009, 81, 202-208.	0.6	12
41	Serological evaluation of experimentally infected dogs by LicTXNPx–ELISA and amastigote-flow cytometry. Veterinary Parasitology, 2008, 158, 23-30.	0.7	19
42	A Leishmania infantum cytosolic tryparedoxin activates B cells to secrete interleukin-10 and specific immunoglobulin. Immunology, 2008, 123, 555-565.	2.0	24
43	Immune response by nasal delivery of hepatitis B surface antigen and codelivery of a CpG ODN in alginate coated chitosan nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69, 405-416.	2.0	149
44	The <i>Leishmania infantum</i> cytosolic SIR2-related protein 1 (LiSIR2RP1) is an NAD+-dependent deacetylase and ADP-ribosyltransferase. Biochemical Journal, 2008, 415, 377-386.	1.7	40
45	SIR2-Deficient <i>Leishmania infantum</i> Induces a Defined IFN-γ/IL-10 Pattern That Correlates with Protection. Journal of Immunology, 2007, 179, 3161-3170.	0.4	102
46	Immune Response Regulation byLeishmaniaSecreted and Nonsecreted Antigens. Journal of Biomedicine and Biotechnology, 2007, 2007, 1-10.	3.0	43
47	Antibodies against a Leishmania infantum peroxiredoxin as a possible marker for diagnosis of visceral leishmaniasis and for monitoring the efficacy of treatment. Immunology Letters, 2005, 101, 18-23.	1.1	34