Giuseppina Caligiuri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9562086/publications.pdf

Version: 2024-02-01

46918 29081 127 11,122 47 104 citations h-index g-index papers 133 133 133 12593 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Vascular Remodeling and Immune Cell Infiltration in Splenic Artery Aneurysms. Angiology, 2021, 72, 539-549.	0.8	O
2	"Plaque erosion―or the danger of eerily quiet appearance. Atherosclerosis, 2021, 318, 43-44.	0.4	0
3	Coronary stent CD31-mimetic coating favours endothelialization and reduces local inflammation and neointimal development <i>in vivo</i> . European Heart Journal, 2021, 42, 1760-1769.	1.0	34
4	CD31 Mimetic Coating Enhances Flow Diverting Stent Integration into the Arterial Wall Promoting Aneurysm Healing. Stroke, 2021, 52, 677-686.	1.0	12
5	A CD31-Derived Peptide Prevents the Development of Antibody-Mediated Lesions in a Rat Model of Aortic Allograft. Transplantation Proceedings, 2021, 53, 746-749.	0.3	O
6	Hitting the right channels to spread a †no-restenosis†message to vascular wall cells. European Heart Journal, 2021, 42, 1786-1788.	1.0	2
7	Protein instability associated with <i>AARS1</i> and <i>MARS1</i> mutations causes trichothiodystrophy. Human Molecular Genetics, 2021, 30, 1711-1720.	1.4	20
8	CD31 as a Therapeutic Target in Atherosclerosis. Circulation Research, 2020, 126, 1178-1189.	2.0	47
9	A vitaminic boost to rock the aortic wall. Cardiovascular Research, 2020, 116, 2175-2176.	1.8	O
10	Bi-allelic TARS Mutations Are Associated with Brittle Hair Phenotype. American Journal of Human Genetics, 2019, 105, 434-440.	2.6	42
11	Reply. Journal of the American College of Cardiology, 2019, 74, 163-164.	1.2	O
12	Core-Shell Polymer-Based Nanoparticles Deliver miR-155-5p to Endothelial Cells. Molecular Therapy - Nucleic Acids, 2019, 17, 210-222.	2.3	16
13	Mechanotransduction, immunoregulation, and metabolic functions of CD31 in cardiovascular pathophysiology. Cardiovascular Research, 2019, 115, 1425-1434.	1.8	40
14	Adipocytes orchestrate the formation of tertiary lymphoid organs in the creeping fat of Crohn's disease affected mesentery. Journal of Autoimmunity, 2019, 103, 102281.	3.0	32
15	Fuel for thought: immunometabolism is a paradigm shift in understanding immunity in cardiovascular disease. Cardiovascular Research, 2019, 115, 1383-1384.	1.8	4
16	In vitro and in vivo evaluation of a dextran-graft-polybutylmethacrylate copolymer coated on CoCr metallic stent. BioImpacts, 2019, 9, 25-36.	0.7	5
17	Role of Biomechanical Stress in the Pathology of the Aorta. , 2019, , 163-180.		2
18	Relationship of Iron Deposition toÂCalcium Deposition in HumanÂAorticÂValve Leaflets. Journal of the American College of Cardiology, 2019, 73, 1043-1054.	1.2	47

#	Article	IF	Citations
19	VEGF-A plasma levels are associated with microvascular obstruction in patients with ST-segment elevation myocardial infarction. International Journal of Cardiology, 2019, 291, 19-24.	0.8	20
20	Cleaved CD31 as a target for in vivo molecular imaging of inflammation. Scientific Reports, 2019, 9, 19560.	1.6	10
21	Comparison of the linking arm effect on the biological performance of a CD31 agonist directly grafted on L605 CoCr alloy by a plasma-based multistep strategy. Biointerphases, 2019, 14, 051009.	0.6	3
22	Haemodynamic stress-induced breaches of the arterial intima trigger inflammation and drive atherogenesis. European Heart Journal, 2019, 40, 928-937.	1.0	60
23	Selfâ€report assessment of severe periodontitis: Periodontal screening score development. Journal of Clinical Periodontology, 2018, 45, 818-831.	2.3	44
24	Thymic function is a major determinant of onset of antibody-mediated rejection in heart transplantation. American Journal of Transplantation, 2018, 18, 964-971.	2.6	3
25	Peptide binding to cleaved CD31 dampens ischemia/reperfusion-induced intestinal injury. Intensive Care Medicine Experimental, 2018, 6, 27.	0.9	3
26	The comeback of immunoregulatory receptors on memory and aging CD8+ T cells: The wisdom of youth. Journal of Leukocyte Biology, 2018, 104, 879-881.	1.5	1
27	Direct contact with intra-tissue senescent erythrocytes accumulated following endothelial injury triggers the acquisition of an osteoblastic phenotype by aortic valve interstitial cells. Atherosclerosis, 2018, 275, e130.	0.4	0
28	Macrophage CD31 Signaling in DissectingÂAortic Aneurysm. Journal of the American College of Cardiology, 2018, 72, 45-57.	1.2	40
29	Vaccination with Prevenar \hat{A}^{\odot} boosts the production of anti-phosphorylcholine antibodies and protects APOE knockout mice from atherosclerosis. Atherosclerosis, 2018, 275, e6-e7.	0.4	1
30	Plasma proproteinâ€convertaseâ€subtilisin/kexin type 9 (PCSK9) and cardiovascular events in type 2 diabetes. Diabetes, Obesity and Metabolism, 2018, 20, 943-953.	2.2	17
31	Translational Relevance and Recent Advances of Animal Models of Abdominal Aortic Aneurysm. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 401-410.	1.1	130
32	Mechanical-induced intimal breaches as a driving force of atherogenesis in mice. Atherosclerosis, 2017, 263, e32.	0.4	0
33	Porphyromonas gingivalis bacteriemia impaired healing process in atherothrombosis complications. Atherosclerosis, 2017, 263, e97.	0.4	0
34	Role of IgE antibodies and mast cells in atherosclerosis. Atherosclerosis, 2017, 263, e9.	0.4	1
35	Plasma PCSK9 and cardiovascular events in type 2 diabetes. Atherosclerosis, 2017, 263, e81.	0.4	1
36	Iron alters valvular interstitial cell function and is associated with calcification in aortic stenosis. European Heart Journal, 2016, 37, 3532-3535.	1.0	32

#	Article	IF	CITATIONS
37	Role and analysis of monocyte subsets in cardiovascular disease. Thrombosis and Haemostasis, 2016, 116, 626-637.	1.8	113
38	GTF2E2 Mutations Destabilize the General Transcription Factor Complex TFIIE in Individuals with DNA Repair-Proficient Trichothiodystrophy. American Journal of Human Genetics, 2016, 98, 627-642.	2.6	49
39	Plasma from patients with calcified aortic disease triggers an osteoblast-like phenotype switch in human aortic valve interstitial cells. Atherosclerosis, 2016, 252, e234.	0.4	0
40	Once Upon a Time: The Adaptive Immune Response in Atherosclerosis—a Fairy Tale No More. Molecular Medicine, 2015, 21, S13-S18.	1.9	11
41	Novel methodologies for biomarker discovery in atherosclerosis. European Heart Journal, 2015, 36, 2635-2642.	1.0	174
42	Control of the T Follicular Helper–Germinal Center B-Cell Axis by CD8 ⁺ Regulatory T Cells Limits Atherosclerosis and Tertiary Lymphoid Organ Development. Circulation, 2015, 131, 560-570.	1.6	130
43	A novel X-linked trichothiodystrophy associated with a nonsense mutation in RNF113A. Journal of Medical Genetics, 2015, 52, 269-274.	1.5	302
44	CD4+CXCR3+ T cells and plasmacytoid dendritic cells drive accelerated atherosclerosis associated with systemic lupus erythematosus. Journal of Autoimmunity, 2015, 63, 59-67.	3.0	39
45	The Cellular and Molecular Basis of Translational Immunometabolism. Immunity, 2015, 43, 421-434.	6.6	161
46	Upholding the T cell immune-regulatory function of CD31 inhibits the formation of T/B immunological synapses inÂvitro and attenuates the development of experimental autoimmune arthritis inÂvivo. Journal of Autoimmunity, 2015, 56, 23-33.	3.0	20
47	Inflammatory Micro-Environmental Cues of Human Atherothrombotic Arteries Confer to Vascular Smooth Muscle Cells the Capacity to Trigger Lymphoid Neogenesis. PLoS ONE, 2014, 9, e116295.	1.1	25
48	M1 macrophages act as $LT\hat{l}^2R$ -independent lymphoid tissue inducer cells during atherosclerosis-related lymphoid neogenesis. Cardiovascular Research, 2014, 101, 434-443.	1.8	65
49	CD31 is a key coinhibitory receptor in the development of immunogenic dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1101-10.	3.3	66
50	High-Density Lipoproteins Potentiate $\hat{l}\pm < \text{sub} > 1 < \text{sub} > -\text{Antitrypsin Therapy in Elastase-Induced Pulmonary Emphysema. American Journal of Respiratory Cell and Molecular Biology, 2014, 51, 536-549.}$	1.4	59
51	Biomechanical factors in atherosclerosis: mechanisms and clinical implications. European Heart Journal, 2014, 35, 3013-3020.	1.0	359
52	Practical management of heart failure with preserved ejection fraction. A modest proposal. Archives of Cardiovascular Diseases, 2013, 106, 345-348.	0.7	2
53	L19. Lymphoid neogenesis in vascular chronic inflammation. Presse Medicale, 2013, 42, 558-560.	0.8	3
54	B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nature Medicine, 2013, 19, 1273-1280.	15.2	422

#	Article	IF	CITATIONS
55	Biomechanical factors in the biology of aortic wall and aortic valve diseases. Cardiovascular Research, 2013, 99, 232-241.	1.8	195
56	Angiotensin II Promotes Thoracic Aortic Dissections and Ruptures in <i>Col3a1</i> Haploinsufficient Mice. Hypertension, 2013, 62, 203-208.	1.3	32
57	An immunologist's guide to CD31 function in T-cells. Journal of Cell Science, 2013, 126, 2343-2352.	1.2	123
58	A CD31-derived peptide prevents angiotensin II-induced atherosclerosis progression and aneurysm formation. Cardiovascular Research, 2012, 94, 30-37.	1.8	38
59	Physiological Induction of Regulatory Qa-1-Restricted CD8+ T Cells Triggered by Endogenous CD4+ T Cell Responses. PLoS ONE, 2011, 6, e21628.	1.1	16
60	Macrophage Plasticity in Experimental Atherosclerosis. PLoS ONE, 2010, 5, e8852.	1.1	432
61	Chronic Rejection Triggers the Development of an Aggressive Intragraft Immune Response through Recapitulation of Lymphoid Organogenesis. Journal of Immunology, 2010, 185, 717-728.	0.4	130
62	Tregs and Human Atherothrombotic Diseases. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1679-1681.	1.1	9
63	TCR Stimulation Drives Cleavage and Shedding of the ITIM Receptor CD31. Journal of Immunology, 2010, 184, 5485-5492.	0.4	58
64	Control of T Cell Reactivation by Regulatory Qa-1–Restricted CD8+ T Cells. Journal of Immunology, 2010, 184, 6585-6591.	0.4	29
65	Intragraft Th17 Infiltrate Promotes Lymphoid Neogenesis and Hastens Clinical Chronic Rejection. Journal of Immunology, 2010, 184, 5344-5351.	0.4	144
66	Splenic marginal zone antigenâ€presenting cells are critical for the primary alloâ€immune response to therapeutic factor VIII in hemophilia A. Journal of Thrombosis and Haemostasis, 2009, 7, 1816-1823.	1.9	60
67	Expansion of CD4+CD25+ regulatory T cells by intravenous immunoglobulin: a critical factor in controlling experimental autoimmune encephalomyelitis. Blood, 2008, 111, 715-722.	0.6	252
68	Antiangiogenic Treatment Prevents Adventitial Constrictive Remodeling in Graft Arteriosclerosis. Transplantation, 2008, 85, 281-289.	0.5	15
69	Topological Determinants and Consequences of Adventitial Responses to Arterial Wall Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1259-1268.	1.1	176
70	Phosphorylcholine-Targeting Immunization Reduces Atherosclerosis. Journal of the American College of Cardiology, 2007, 50, 540-546.	1.2	171
71	Atheroprotective Effect of CD31 Receptor Globulin Through Enrichment of Circulating Regulatory T-Cells. Journal of the American College of Cardiology, 2007, 50, 344-350.	1.2	37
72	Neoangiogenesis Induced by Progenitor Endothelial Cells: Effect of Fucoidan from Marine Algae. Cardiovascular and Hematological Agents in Medicinal Chemistry, 2007, 5, 67-77.	0.4	38

#	Article	IF	CITATIONS
73	Atheroprotective effect of adjuvants in apolipoprotein E knockout mice. Atherosclerosis, 2006, 184, 330-341.	0.4	49
74	Decorin overexpression reduces atherosclerosis development in apolipoprotein E-deficient mice. Atherosclerosis, 2006, 187, 31-39.	0.4	44
75	Intravenous immunoglobulin in autoimmune disorders: An insight into the immunoregulatory mechanisms. International Immunopharmacology, 2006, 6, 528-534.	1.7	70
76	Lymphocyte responses in acute coronary syndromes: lack of regulation spawns deviant behaviour. European Heart Journal, 2006, 27, 2485-2486.	1.0	29
77	Direct and Indirect Effects of Alloantibodies Link Neointimal and Medial Remodeling in Graft Arteriosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 2359-2365.	1.1	32
78	IL-20 and Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 1929-1930.	1.1	20
79	The Proatherogenic Role of T Cells Requires Cell Division and Is Dependent on the Stage of the Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 353-358.	1.1	23
80	Reduced Immunoregulatory CD31 + T Cells in Patients With Atherosclerotic Abdominal Aortic Aneurysm. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 618-623.	1.1	67
81	Isolation of "Side Population―Progenitor Cells From Healthy Arteries of Adult Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 281-286.	1.1	149
82	Intravenous Immunoglobulin and Dendritic Cells. Clinical Reviews in Allergy and Immunology, 2005, 29, 201-206.	2.9	13
83	Electrocardiographic characterization of stress-induced myocardial infarction in atherosclerotic mice. Acta Physiologica Scandinavica, 2005, 184, 87-94.	2.3	9
84	When Interleukin-18 Conducts, the Preludio Sounds the Same no Matter Who Plays. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 655-657.	1.1	10
85	Role of the Intrinsic Coagulation Pathway in Atherogenesis Assessed in Hemophilic Apolipoprotein E Knockout Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, e123-6.	1.1	40
86	Complexity of antigenic determinants and humoral responses in vascular injury. Cardiovascular Research, 2005, 68, 183-185.	1.8	0
87	Reduced Immunoregulatory CD31+T Cells in the Blood of Atherosclerotic Mice With Plaque Thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1659-1664.	1.1	37
88	Adenovirus-Mediated Gene Transfer of Superoxide Dismutase and Catalase Decreases Restenosis after Balloon Angioplasty. Journal of Vascular Research, 2005, 42, 255-265.	0.6	30
89	Non-viral gene transfer of murine spleen cells achieved by in vivo electroporation. Gene Therapy, 2003, 10, 569-579.	2.3	32
90	Autoreactive Antibody Repertoire Is Perturbed in Atherosclerotic Patients. Laboratory Investigation, 2003, 83, 939-947.	1.7	23

#	Article	IF	Citations
91	Interleukin-10 Deficiency Increases Atherosclerosis, Thrombosis, and Low-density Lipoproteins in Apolipoprotein E Knockout Mice. Molecular Medicine, 2003, 9, 10-17.	1.9	297
92	1980 Identification and characterization of potential stem cells in the vascular wall of normal adult mouse aorta. European Heart Journal, 2003, 24, 365.	1.0	0
93	Interleukin-10 deficiency increases atherosclerosis, thrombosis, and low-density lipoproteins in apolipoprotein E knockout mice. Molecular Medicine, 2003, 9, 10-7.	1.9	136
94	Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. Journal of Clinical Investigation, 2002, 109, 745-753.	3.9	444
95	Immune Mechanisms in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 1876-1890.	1.1	730
96	In Vivo Downregulation of T Helper Cell 1 Immune Responses Reduces Atherogenesis in Apolipoprotein E-Knockout Mice. Circulation, 2001, 104, 197-202.	1.6	277
97	<i>Chlamydia pneumoniae</i> li>Infection Does Not Induce or Modify Atherosclerosis in Mice. Circulation, 2001, 103, 2834-2838.	1.6	109
98	LDL Immunization Induces T-Cell–Dependent Antibody Formation and Protection Against Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 108-114.	1.1	258
99	Immunomodulation of atherosclerosis: myth and reality. Journal of Internal Medicine, 2000, 247, 397-405.	2.7	32
100	Induction of Neonatal Tolerance to Oxidized Lipoprotein Reduces Atherosclerosis In ApoE Knockout Mice. Molecular Medicine, 2000, 6, 283-290.	1.9	44
101	Evidence for Antigen-Driven T-Cell Response in Unstable Angina. Circulation, 2000, 102, 1114-1119.	1.6	110
102	Increasing Levels of Interleukin (IL)-1Ra and IL-6 During the First 2 Days of Hospitalization in Unstable Angina Are Associated With Increased Risk of In-Hospital Coronary Events. Circulation, 1999, 99, 2079-2084.	1.6	456
103	Myocardial infarction mediated by endothelin receptor signaling in hypercholesterolemic mice. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 6920-6924.	3.3	167
104	Elevated Levels of C-Reactive Protein at Discharge in Patients With Unstable Angina Predict Recurrent Instability. Circulation, 1999, 99, 855-860.	1.6	520
105	Enhanced phenylephrine-induced rhythmic activity in the atherosclerotic mouse aorta via an increase in opening of KCa channels: relation to Kv channels and nitric oxide. British Journal of Pharmacology, 1999, 128, 637-646.	2.7	22
106	The macrophage scavenger receptor type A directs modified proteins to antigen presentation. European Journal of Immunology, 1999, 29, 512-521.	1.6	95
107	Enhanced inflammatory response in patients with preinfarction unstable angina. Journal of the American College of Cardiology, 1999, 34, 1696-1703.	1.2	144
108	Effects of sex and age on atherosclerosis and autoimmunity in apoE-deficient mice. Atherosclerosis, 1999, 145, 301-308.	0.4	135

#	Article	IF	CITATIONS
109	Functionality of specific immunity in atherosclerosis. American Heart Journal, 1999, 138, S438-S443.	1.2	12
110	Incremental prognostic value of serum levels of troponin T and C-reactive protein on admission in patients with unstable angina pectoris. American Journal of Cardiology, 1998, 82, 715-719.	0.7	156
111	Immune system activation follows inflammation in unstable angina: pathogenetic implications. Journal of the American College of Cardiology, 1998, 32, 1295-1304.	1.2	97
112	Enhanced Inflammatory Response to Coronary Angioplasty in Patients With Severe Unstable Angina. Circulation, 1998, 98, 2370-2376.	1.6	292
113	Monocytes of Patients With Recurrent Unstable Angina Are Hyper-Responsive to Lypopolysaccharide Challenge. Journal of the American College of Cardiology, 1998, 31, 272A.	1.2	3
114	Immunoglobulin treatment reduces atherosclerosis in apo E knockout mice Journal of Clinical Investigation, 1998, 102, 910-918.	3.9	266
115	Anti-oxidized-LDL Antibodies as a Possible Cause of Inflammation in Unstable Angina. Journal of the American College of Cardiology, 1998, 31, 450A.	1.2	0
116	Increase of Interleukin-1Ra and Interleukin-6 Levels During the First Two Days of Hospitalization Is Associated With Raised Risk of In-hospital Coronary Events in Unstable Angina. Journal of the American College of Cardiology, 1998, 31, 450A.	1.2	0
117	4.W20.2 Autoimmunity in atherosclerosis. Atherosclerosis, 1997, 134, 289.	0.4	1
118	Role of Inflammation in the Pathogenesis of Unstable Coronary Artery Disease. American Journal of Cardiology, 1997, 80, 10E-16E.	0.7	42
119	Serum levels of C-reactive protein predict acute complications and restenosis after PTCA in unstable angina. Journal of the American College of Cardiology, 1996, 27, 363.	1.2	1
120	Intracellular neutrophil myeloperoxidase is reduced in unstable angina and acute myocardial infarction, but its reduction is not related to ischemia. Journal of the American College of Cardiology, 1996, 27, 611-616.	1.2	150
121	Episodic activation off the coagulation system in unstable angina does not elicit an acute phase reaction. American Journal of Cardiology, 1996, 77, 85-87.	0.7	33
122	Temporal Relation Between Ischemic Episodes and Activation of the Coagulation System in Unstable Angina. Circulation, 1996, 93, 2121-2127.	1.6	38
123	Plasma Protein Acute-Phase Response in Unstable Angina Is Not Induced by Ischemic Injury. Circulation, 1996, 94, 2373-2380.	1.6	134
124	Elevated Levels of Interleukin-6 in Unstable Angina. Circulation, 1996, 94, 874-877.	1.6	588
125	973-113 Elevated C-Reactive Protein at Discharge and at Three Months After Waning of Symptoms in Unstable Angina is Associated with Recurrence of Instability During 12 Months Follow-up. Journal of the American College of Cardiology, 1995, 25, 250A-251A.	1.2	6
126	Plasmin-antiplasmin complexes in prognostic evaluation of patients with unstable angina. Fibrinolysis, 1994, 8, 126-127.	0.5	0

#	Article	IF	CITATIONS
127	Frequent sampling by clear venipuncture in unstable angina is a reliable method to assess haemostatic system activity. Fibrinolysis, 1994, 8, 142-144.	0.5	2