Steven A. Abrams

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9561945/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The 2011 Report on Dietary Reference Intakes for Calcium and Vitamin D from the Institute of Medicine: What Clinicians Need to Know. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 53-58.	1.8	3,343
2	Peak Bone Mass. Osteoporosis International, 2001, 11, 985-1009.	1.3	982
3	Diagnosis and Prevention of Iron Deficiency and Iron-Deficiency Anemia in Infants and Young Children (0–3 Years of Age). Pediatrics, 2010, 126, 1040-1050.	1.0	761
4	IOM Committee Members Respond to Endocrine Society Vitamin D Guideline. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 1146-1152.	1.8	492
5	Optimizing Bone Health in Children and Adolescents. Pediatrics, 2014, 134, e1229-e1243.	1.0	351
6	The Role of the Pediatrician in Primary Prevention of Obesity. Pediatrics, 2015, 136, e275-e292. The 2011 Dietary Reference Intakes for Calcium and Vitamin D: What Dietetics Practitioners Need to	1.0	298
	for Calcium and Vitamin D (available at) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 507 Td (http://www.iom.e	du/Report	s/2010/Die

#	Article	IF	CITATIONS
19	Vitamin D Receptor Fok1 Polymorphisms Affect Calcium Absorption, Kinetics, and Bone Mineralization Rates During Puberty. Journal of Bone and Mineral Research, 2005, 20, 945-953.	3.1	114
20	Genetic Defect in <i>CYP24A1</i> , the Vitamin D 24-Hydroxylase Gene, in a Patient with Severe Infantile Hypercalcemia. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E268-E274.	1.8	113
21	Nutritional impact of elevated calcium transport activity in carrots. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1431-1435.	3.3	111
22	High Rates of Mortality and Morbidity Occur in Infants With Parenteral Nutrition–Associated Cholestasis. Journal of Parenteral and Enteral Nutrition, 2010, 34, 32-37.	1.3	111
23	Effect of Prebiotic Supplementation and Calcium Intake on Body Mass Index. Journal of Pediatrics, 2007, 151, 293-298.	0.9	109
24	Postnatal attainment of intrauterine macromineral accretion rates in low birth weight infants fed fortified human milk. Journal of Pediatrics, 1995, 126, 441-447.	0.9	89
25	Mineral balance and bone turnover in adolescents with anorexia nervosa. Journal of Pediatrics, 1993, 123, 326-331.	0.9	88
26	Infant milk-feeding practices and food allergies, allergic rhinitis, atopic dermatitis, and asthma throughout the life span: a systematic review. American Journal of Clinical Nutrition, 2019, 109, 772S-799S.	2.2	86
27	Fifty Years of Human Space Travel: Implications for Bone and Calcium Research. Annual Review of Nutrition, 2014, 34, 377-400.	4.3	85
28	Potassium Bicarbonate Attenuates the Urinary Nitrogen Excretion That Accompanies an Increase in Dietary Protein and May Promote Calcium Absorption. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 645-653.	1.8	81
29	Bone Densitometry in Infants and Young Children: The 2013 ISCD Pediatric Official Positions. Journal of Clinical Densitometry, 2014, 17, 243-257.	0.5	78
30	Higher Serum 25-Hydroxyvitamin D Levels in School-Age Children Are Inconsistently Associated with Increased Calcium Absorption. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 2421-2427.	1.8	75
31	Nutritional Rickets: An Old Disease Returns. Nutrition Reviews, 2002, 60, 111-115.	2.6	74
32	Consumption of Raw or Unpasteurized Milk and Milk Products by Pregnant Women and Children. Pediatrics, 2014, 133, 175-179.	1.0	73
33	Snacks, Sweetened Beverages, Added Sugars, and Schools. Pediatrics, 2015, 135, 575-583.	1.0	73
34	Vitamin D supplementation increases calcium absorption without a threshold effect. American Journal of Clinical Nutrition, 2014, 99, 624-631.	2.2	70
35	Calcium Absorption, Kinetics, Bone Density, and Bone Structure in Patients with Hereditary Vitamin D-Resistant Rickets. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 3701-3709.	1.8	67
36	The Effect of Vitamin D2 and Vitamin D3 on Intestinal Calcium Absorption in Nigerian Children with Rickets. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 3314-3321.	1.8	66

#	Article	IF	CITATIONS
37	Bone mineralization in former very low birth weight infants fed either human milk or commercial formula. Journal of Pediatrics, 1988, 112, 956-960.	0.9	64
38	Effects of Potassium Alkali and Calcium Supplementation on Bone Turnover in Postmenopausal Women. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 3528-3533.	1.8	62
39	Perturbed Zinc Homeostasis in Rural 3–5-y-Old Malawian Children Is Associated With Abnormalities in Intestinal Permeability Attributed to Tropical Enteropathy. Pediatric Research, 2010, 67, 671-675.	1.1	62
40	Pubertal Girls Only Partially Adapt to Low Dietary Calcium Intakes. Journal of Bone and Mineral Research, 2004, 19, 759-763.	3.1	60
41	Dietary Guidelines for Calcium and Vitamin D: A New Era. Pediatrics, 2011, 127, 566-568.	1.0	60
42	Randomized Trial of Human Milk Cream as a Supplement to Standard Fortification of an Exclusive Human Milk-Based Diet in Infants 750-1250Âg Birth Weight. Journal of Pediatrics, 2014, 165, 915-920.	0.9	55
43	Free 25(OH)D and Calcium Absorption, PTH, and Markers of Bone Turnover. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 4140-4145.	1.8	55
44	Calcium Absorption, Bone Mass Accumulation, and Kinetics Increase during Early Pubertal Development in Girls. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 1805-1809.	1.8	55
45	Fish Oil–Based Lipid Emulsions in the Treatment of Parenteral Nutrition-Associated Liver Disease: An Ongoing Positive Experience. Advances in Nutrition, 2014, 5, 65-70.	2.9	52
46	An Inflection Point of Serum 25-Hydroxyvitamin D for Maximal Suppression of Parathyroid Hormone Is Not Evident from Multi-Site Pooled Data in Children and Adolescents ,. Journal of Nutrition, 2010, 140, 1983-1988.	1.3	51
47	Bioavailability of calcium and phosphorus in human milk fortifiers and formula for very low birth weight infants. Journal of Pediatrics, 1988, 113, 95-100.	0.9	50
48	Iron Incorporation and Post-Malaria Anaemia. PLoS ONE, 2008, 3, e2133.	1.1	48
49	Continuous Feedings of Fortified Human Milk Lead to Nutrient Losses of Fat, Calcium and Phosphorous. Nutrients, 2010, 2, 230-240.	1.7	47
50	Calcium fortification of breakfast cereal enhances calcium absorption in children without affecting iron absorption. Journal of Pediatrics, 2001, 139, 522-526.	0.9	42
51	An Educational Program Enhances Food Label Understanding of Young Adolescents. Journal of the American Dietetic Association, 2006, 106, 913-916.	1.3	41
52	The efficacy of micronutrient supplementation in reducing the prevalence of anaemia and deficiencies of zinc and iron among adolescents in Sri Lanka. European Journal of Clinical Nutrition, 2008, 62, 856-865.	1.3	41
53	Supplementation with 1000 IU vitamin D/d leads to parathyroid hormone suppression, but not increased fractional calcium absorption, in 4–8-y-old children: a double-blind randomized controlled trial. American Journal of Clinical Nutrition, 2013, 97, 217-223.	2.2	40
54	A Systematic Review of Controlled Trials of Lower-Protein or Energy-Containing Infant Formulas for Use by Healthy Full-Term Infants. Advances in Nutrition, 2015, 6, 178-188.	2.9	39

#	Article	IF	CITATIONS
55	Zinc Metabolism in Adolescents with Crohn's Disease. Pediatric Research, 2004, 56, 235-239.	1.1	38
56	Changes in calcium kinetics associated with menarche. Journal of Clinical Endocrinology and Metabolism, 1996, 81, 2017-2020.	1.8	38
57	Fractional Calcium Absorption Is Increased in Girls with Rett Syndrome. Journal of Pediatric Gastroenterology and Nutrition, 2006, 42, 419-426.	0.9	37
58	Calcium Absorption in Infants and Small Children: Methods of Determination and Recent Findings. Nutrients, 2010, 2, 474-480.	1.7	34
59	Vitamin D: effects on childhood health and disease. Nature Reviews Endocrinology, 2013, 9, 162-170.	4.3	34
60	Variables Related to Urinary Calcium Excretion in Young Girls. Journal of Pediatric Gastroenterology and Nutrition, 1996, 23, 8-12.	0.9	34
61	Application of magnetic sector thermal ionization mass spectrometry to studies of erythrocyte iron incorporation in small children. Biological Mass Spectrometry, 1994, 23, 771-775.	0.5	32
62	Inclusion of Guava Enhances Non-Heme Iron Bioavailability but Not Fractional Zinc Absorption from a Rice-Based Meal in Adolescents. Journal of Nutrition, 2013, 143, 852-858.	1.3	32
63	Meals and Dephytinization Affect Calcium and Zinc Absorption in Nigerian Children with Rickets. Journal of Nutrition, 2009, 139, 926-932.	1.3	31
64	Relationship of calcium absorption with 25(OH)D and calcium intake in children with rickets. Nutrition Reviews, 2010, 68, 682-688.	2.6	30
65	Infant and child formula shortages: now is the time to prevent recurrences. American Journal of Clinical Nutrition, 2022, 116, 289-292.	2.2	30
66	Bone Turnover Response to Changes in Calcium Intake Is Altered in Girls and Adult Women in Families with Histories of Osteoporosis. Journal of Bone and Mineral Research, 1998, 13, 491-499.	3.1	29
67	Pubertal Changes in Calcium Kinetics in Girls Assessed Using 42Ca. Pediatric Research, 1993, 34, 455-459.	1.1	28
68	Effect of growth hormone treatment on calcium kinetics in patients with osteogenesis Imperfecta Type III and IV. Bone, 1999, 25, 501-505.	1.4	28
69	Infant milk-feeding practices and diabetes outcomes in offspring: a systematic review. American Journal of Clinical Nutrition, 2019, 109, 817S-837S.	2.2	28
70	Mineral balance studies in very low birth weight infants fed human milk. Journal of Pediatrics, 1988, 113, 230-238.	0.9	27
71	Iron supplementation does not affect copper and zinc absorption in breastfed infants. American Journal of Clinical Nutrition, 2009, 89, 185-190.	2.2	27
72	Efficacy of a multi micronutrient-fortified drink in improving iron and micronutrient status among schoolchildren with low iron stores in India: a randomised, double-masked placebo-controlled trial. European Journal of Clinical Nutrition, 2013, 67, 36-41.	1.3	27

#	Article	IF	CITATIONS
73	Magnesium Metabolism in 4-Year-Old to 8-Year-Old Children. Journal of Bone and Mineral Research, 2014, 29, 118-122.	3.1	27
74	Bioavailability of iron and zinc from a multiple micronutrient-fortified beverage. Journal of Pediatrics, 2004, 145, 26-31.	0.9	25
75	Vitamin D supplementation during pregnancy. Journal of Bone and Mineral Research, 2011, 26, 2338-2340.	3.1	25
76	Inductively Coupled Plasma Mass Spectrometric Analysis of Calcium Isotopes in Human Serum: A Low-Sample-Volume Acid-Equilibration Method. Clinical Chemistry, 2003, 49, 2050-2055.	1.5	23
77	Adaptation of calcium absorption during treatment of nutritional rickets in Nigerian children. British Journal of Nutrition, 2008, 100, 387-392.	1.2	23
78	Infant milk-feeding practices and diagnosed celiac disease and inflammatory bowel disease in offspring: a systematic review. American Journal of Clinical Nutrition, 2019, 109, 838S-851S.	2.2	23
79	Effect of tannic acid on iron absorption in strawâ€colored fruit bats (<i>Eidolon helvum</i>). Zoo Biology, 2010, 29, 335-343.	0.5	22
80	Addition of Rice Cereal to Formula Does Not Impair Mineral Bioavailability. Journal of Pediatric Gastroenterology and Nutrition, 1998, 26, 175-178.	0.9	22
81	A non-markovian model for calcium kinetics in the body. Journal of Pharmacokinetics and Pharmacodynamics, 1994, 22, 367-379.	0.6	21
82	Serum 1,25-dihydroxyvitamin D and calcium intake affect rates of bone calcium deposition during pregnancy and the early postpartum period. American Journal of Clinical Nutrition, 2012, 96, 64-72.	2.2	20
83	CALCIUM AND BONE MINERAL METABOLISM IN CHILDREN WITH CHRONIC ILLNESSES. Annual Review of Nutrition, 2004, 24, 13-32.	4.3	19
84	Bioavailability of elemental iron powder in white wheat bread. European Journal of Clinical Nutrition, 2004, 58, 555-558.	1.3	19
85	Height and Height Z-Score Are Related to Calcium Absorption in Five- to Fifteen-Year-Old Girls. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 5077-5081.	1.8	19
86	Assessing mineral metabolism in children using stable isotopes. Pediatric Blood and Cancer, 2008, 50, 438-441.	0.8	19
87	Relationship between balance and dual tracer isotopic measurements of calcium absorption and excretion. Journal of Clinical Endocrinology and Metabolism, 1994, 79, 965-969.	1.8	19
88	α-Lactalbumin and Casein-Glycomacropeptide Do Not Affect Iron Absorption from Formula in Healthy Term Infants. Journal of Nutrition, 2012, 142, 1226-1231.	1.3	18
89	Increased Calcium Absorption From Synthetic Stable Amorphous Calcium Carbonate: Double-Blind Randomized Crossover Clinical Trial in Postmenopausal Women. Journal of Bone and Mineral Research, 2014, 29, 2203-2209.	3.1	18
90	Delaying Iron Therapy until 28 Days after Antimalarial Treatment Is Associated with Greater Iron Incorporation and Equivalent Hematologic Recovery after 56 Days in Children: A Randomized Controlled Trial. Journal of Nutrition, 2016, 146, 1769-1774.	1.3	18

#	Article	IF	CITATIONS
91	Infant milk-feeding practices and cardiovascular disease outcomes in offspring: a systematic review. American Journal of Clinical Nutrition, 2019, 109, 800S-816S.	2.2	18
92	Effects of development on techniques for calcium stable isotope studies in children. Biological Mass Spectrometry, 1994, 23, 357-361.	0.5	17
93	Calcium tracer kinetics show decreased irreversible flow to bone in glucocorticoid treated patients. Calcified Tissue International, 1995, 56, 533-535.	1.5	17
94	Infant iron status affects iron absorption in Peruvian breastfed infants at 2 and 5 mo of age. American Journal of Clinical Nutrition, 2013, 98, 1475-1484.	2.2	17
95	Safety and Efficacy of Human Milk Fortification for Very-Low-Birth-Weight Infants. Nutrition Reviews, 2004, 62, 482-485.	2.6	15
96	Fortifier and Cream Improve Fat Delivery in Continuous Enteral Infant Feeding of Breast Milk. Nutrients, 2015, 7, 1174-1183.	1.7	15
97	Infant milk-feeding practices and childhood leukemia: a systematic review. American Journal of Clinical Nutrition, 2019, 109, 757S-771S.	2.2	15
98	Body composition reference data for a young multiethnic female population. Applied Radiation and Isotopes, 1998, 49, 587-588.	0.7	14
99	Improved Estimation of the Calcium Content of Total Digestive Secretions. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 1193-1195.	1.8	14
100	Fractional Absorption of Active Absorbable Algal Calcium (AAACa) and Calcium Carbonate Measured by a Dual Stable-Isotope Method. Nutrients, 2010, 2, 752-761.	1.7	14
101	Setting Dietary Reference Intakes with the use of bioavailability data: calcium. American Journal of Clinical Nutrition, 2010, 91, 1474S-1477S.	2.2	14
102	Low Zinc Status and Absorption Exist in Infants with Jejunostomies or Ileostomies Which Persists after Intestinal Repair. Nutrients, 2012, 4, 1273-1281.	1.7	14
103	The Relationship Between Magnesium and Calcium Kinetics in 9- to 14-Year-Old Children. Journal of Bone and Mineral Research, 1998, 13, 149-153.	3.1	13
104	Zinc homeostasis in 1–4 year olds consuming diets typical of US children. British Journal of Nutrition, 2007, 98, 358-363.	1.2	13
105	Docosahexaenoic Acid (DHA) Supplementation of Orange Juice Increases Plasma Phospholipid DHA Content of Children. Journal of the American Dietetic Association, 2009, 109, 708-712.	1.3	13
106	What Are the Risks and Benefits to Increasing Dietary Bone Minerals and Vitamin D Intake in Infants and Small Children?. Annual Review of Nutrition, 2011, 31, 285-297.	4.3	13
107	Protecting Vulnerable Infants by Ensuring Safe Infant Formula Use. Journal of Pediatrics, 2019, 211, 201-206.	0.9	13
108	Orange But Not Apple Juice Enhances Ferrous Fumarate Absorption in Small Children. Journal of Pediatric Gastroenterology and Nutrition, 2010, 50, 545-550.	0.9	13

#	Article	IF	CITATIONS
109	Extraction of Magnesium from Biological Fluids Using 8-Hydroxyquinoline and Cation-Exchange Chromatography for Isotopic Enrichment Analysis Using Thermal Ionization Mass Spectrometry. Analytical Biochemistry, 1994, 218, 92-97.	1.1	12
110	Postnatal Vitamin A Supplementation in Developing Countries: An Intervention Whose Time Has Come?. Pediatrics, 2008, 122, 180-181.	1.0	12
111	Delayed Introduction of Parenteral Phosphorus Is Associated with Hypercalcemia in Extremely Preterm Infants. Journal of Nutrition, 2016, 146, 1212-1216.	1.3	12
112	Is It Time to Put a Moratorium on New Infant Formulas that Are Not Adequately Investigated?. Journal of Pediatrics, 2015, 166, 756-760.	0.9	11
113	Bone Turnover during LactationCan Calcium Supplementation Make a Difference?. Journal of Clinical Endocrinology and Metabolism, 1998, 83, 1056-1058.	1.8	11
114	Precise determination of the absorptive component of urinary calcium excretion using stable isotopes. Pediatric Nephrology, 1995, 9, 295-297.	0.9	10
115	Changing the zinc:iron ratio in a cereal-based nutritional supplement has no effect on percent absorption of iron and zinc in Sri Lankan children. British Journal of Nutrition, 2010, 103, 1015-1022.	1.2	10
116	Zinc for preterm infants: who needs it and how much is needed?. American Journal of Clinical Nutrition, 2013, 98, 1373-1374.	2.2	10
117	Micronutrient Requirements of High-Risk Infants. Clinics in Perinatology, 2014, 41, 347-361.	0.8	10
118	Vitamin D requirements in adolescents: what is the target?. American Journal of Clinical Nutrition, 2011, 93, 483-484.	2.2	9
119	Bioavailability of enteric-coated microencapsulated calcium during pregnancy: a randomized crossover trial in Bangladesh. American Journal of Clinical Nutrition, 2014, 100, 1587-1595.	2.2	9
120	Compartmental analysis of magnesium kinetics in Mg-sufficient and Mg-deficient rats. Metabolism: Clinical and Experimental, 2000, 49, 1326-1329.	1.5	8
121	Can lactoferrin prevent neonatal sepsis and necrotizing enterocolitis?. Expert Review of Anti-Infective Therapy, 2009, 7, 515-525.	2.0	8
122	Calcium kinetics during bed rest with artificial gravity and exercise countermeasures. Osteoporosis International, 2014, 25, 2237-2244.	1.3	8
123	Serum Phosphorus Levels in Premature Infants Receiving a Donor Human Milk Derived Fortifier. Nutrients, 2015, 7, 2562-2573.	1.7	8
124	A Novel Approach to Improving Fat Delivery in Neonatal Enteral Feeding. Nutrients, 2015, 7, 5051-5064.	1.7	8
125	Clarification of DRIs for Calcium and Vitamin D across Age Groups. Journal of the American Dietetic Association, 2011, 111, 1467.	1.3	7
126	Vitamin D requirements of children: "all my life's a circle― Nutrition Reviews, 2012, 70, 201-206.	2.6	7

#	Article	IF	CITATIONS
127	Impact of New-Generation Parenteral Lipid Emulsions in Pediatric Nutrition. Advances in Nutrition, 2013, 4, 518-520.	2.9	7
128	Growth outcomes of small for gestational age preterm infants before and after implementation of an exclusive human milk-based diet. Journal of Perinatology, 2021, 41, 1859-1864.	0.9	7
129	Absorption of calcium from the carbonated dairy soft drink is greater than that from fat-free milk and calcium-fortified orange juice in women. Nutrition Research, 2005, 25, 737-742.	1.3	6
130	A Simple Single Serum Method to Measure Fractional Calcium Absorption using Dual Stable Isotopes. Experimental and Clinical Endocrinology and Diabetes, 2010, 118, 653-656.	0.6	6
131	Vitamin D and bone minerals in neonates. Early Human Development, 2021, 162, 105461.	0.8	6
132	Targeting Dietary Vitamin D Intakes and Plasma 25-Hydroxyvitamin D in Healthy Infants. JAMA - Journal of the American Medical Association, 2013, 309, 1830.	3.8	5
133	Isotope Concentrations from 24-h Urine and 3-h Serum Samples Can Be Used to Measure Intestinal Magnesium Absorption in Postmenopausal Women. Journal of Nutrition, 2014, 144, 533-537.	1.3	5
134	What does it mean to target specific serum 25-hydroxyvitamin D concentrations in children and adolescents?. American Journal of Clinical Nutrition, 2016, 104, 1193-1194.	2.2	5
135	Using stable isotope tracers to study bone metabolism in children. Journal of Physiology, 2019, 597, 1311-1319.	1.3	5
136	Use of Stable Isotopic Tracers in Studies of Whole Body Calcium Metabolism. Connective Tissue Research, 1995, 31, 291-293.	1.1	4
137	Total body calcium by neutron activation analysis: Reference data for children. Journal of Radioanalytical and Nuclear Chemistry, 2001, 249, 461-464.	0.7	4
138	Comment on "Human Milk–Derived Fortifiers Compared with Bovine Milk–Derived Fortifiers in Preterm Infants: A Systematic Review and Meta-Analysis". Advances in Nutrition, 2020, 11, 1712-1713.	2.9	2
139	Improving Rehydration Solutions With Human Milk Proteins: Are the Benefits Worth the Challenges?. Journal of Pediatric Gastroenterology and Nutrition, 2007, 44, 298-299.	0.9	1
140	Evaluation of an inexpensive calcium absorption index in healthy older men and women. Clinical Endocrinology, 2010, 72, 22-25.	1.2	1
141	Calcium Kinetics in Glycogen Storage Disease Type 1a. Calcified Tissue International, 1996, 59, 449-453.	1.5	1
142	Nutritional Controversy Nutrition and Health: Topics and Controversies Felix Bronner. BioScience, 1997, 47, 125-126.	2.2	0
143	Building skeletons during adolescence: what is the target?. British Journal of Nutrition, 2010, 103, 467-468.	1.2	0
144	Mineral homeostasis in young children consuming typical U.S. diets. Pure and Applied Chemistry, 2010, 82, 437-445.	0.9	0

#	Article	IF	CITATIONS
145	Reply. Journal of Pediatrics, 2014, 164, 947.	0.9	Ο
146	Long-Term Growth and Body Composition Consequences of Using Fortified Donor Milk or Preterm Formula for Very-Low-Birth-Weight Infants. Journal of Nutrition, 2019, 150, 188-189.	1.3	0
147	Human milk fortifiers: corrigenda. American Journal of Clinical Nutrition, 2020, 111, 1301-1302.	2.2	Ο