
Anthony Fardet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9561943/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre?. Nutrition Research Reviews, 2010, 23, 65-134.	4.1	823
2	ls the in vitro antioxidant potential of whole-grain cereals and cereal products well reflected in vivo?. Journal of Cereal Science, 2008, 48, 258-276.	3.7	295
3	Minimally processed foods are more satiating and less hyperglycemic than ultra-processed foods: a preliminary study with 98 ready-to-eat foods. Food and Function, 2016, 7, 2338-2346.	4.6	206
4	Associations between food and beverage groups and major diet-related chronic diseases: an exhaustive review of pooled/meta-analyses and systematic reviews. Nutrition Reviews, 2014, 72, 741-762.	5.8	170
5	Parameters controlling the glycaemic response to breads. Nutrition Research Reviews, 2006, 19, 18-25.	4.1	160
6	Toward a New Philosophy of Preventive Nutrition: From a Reductionist to a Holistic Paradigm to Improve Nutritional Recommendations. Advances in Nutrition, 2014, 5, 430-446.	6.4	144
7	<i>In vitro</i> and <i>in vivo</i> antioxidant potential of milks, yoghurts, fermented milks and cheeses: a narrative review of evidence. Nutrition Research Reviews, 2018, 31, 52-70.	4.1	103
8	Ultra-Processed Foods and Food System Sustainability: What Are the Links?. Sustainability, 2020, 12, 6280.	3.2	103
9	Current Food Classifications in Epidemiological Studies Do Not Enable Solid Nutritional Recommendations for Preventing Diet-Related Chronic Diseases: The Impact of Food Processing. Advances in Nutrition, 2015, 6, 629-638.	6.4	81
10	Processing of oat: the impact on oat's cholesterol lowering effect. Food and Function, 2018, 9, 1328-1343.	4.6	77
11	Whole-Grain and Refined Wheat Flours Show Distinct Metabolic Profiles in Rats as Assessed by a 1H NMR-Based Metabonomic Approach1. Journal of Nutrition, 2007, 137, 923-929.	2.9	74
12	A Liquid Chromatographyâ^'Quadrupole Time-of-Flight (LCâ^'QTOF)-based Metabolomic Approach Reveals New Metabolic Effects of Catechin in Rats Fed High-Fat Diets. Journal of Proteome Research, 2008, 7, 2388-2398.	3.7	66
13	Metabolomics Provide New Insight on the Metabolism of Dietary Phytochemicals in Rats. Journal of Nutrition, 2008, 138, 1282-1287.	2.9	62
14	Influence of food structure on dairy protein, lipid and calcium bioavailability: A narrative review of evidence. Critical Reviews in Food Science and Nutrition, 2019, 59, 1987-2010.	10.3	61
15	Ultra-processed foods: A new holistic paradigm?. Trends in Food Science and Technology, 2019, 93, 174-184.	15.1	60
16	Characterization of the Degree of Food Processing in Relation With Its Health Potential and Effects. Advances in Food and Nutrition Research, 2018, 85, 79-129.	3.0	58
17	A shift toward a new holistic paradigm will help to preserve and better process grain products' food structure for improving their health effects. Food and Function, 2015, 6, 363-382.	4.6	55
18	The degree of processing of foods which are most widely consumed by the French elderly population is associated with satiety and glycemic potentials and nutrient profiles. Food and Function, 2017, 8, 651-658.	4.6	49

ANTHONY FARDET

#	Article	IF	CITATIONS
19	Involvement of dietary saturated fats, from all sources or of dairy origin only, in insulin resistance and type 2 diabetes. Nutrition Reviews, 2016, 74, 33-47.	5.8	45
20	Perspective: Reductionist Nutrition Research Has Meaning Only within the Framework of Holistic and Ethical Thinking. Advances in Nutrition, 2018, 9, 655-670.	6.4	43
21	Plant-Based Foods as a Source of Lipotropes for Human Nutrition: A Survey of In Vivo Studies. Critical Reviews in Food Science and Nutrition, 2013, 53, 535-590.	10.3	42
22	Wheat Germ Supplementation of a Low Vitamin E Diet in Rats Affords Effective Antioxidant Protection in Tissues. Journal of the American College of Nutrition, 2008, 27, 222-228.	1.8	38
23	The holistico-reductionist Siga classification according to the degree of food processing: an evaluation of ultra-processed foods in French supermarkets. Food and Function, 2020, 11, 2026-2039.	4.6	36
24	From a Reductionist to a Holistic Approach in Preventive Nutrition to Define New and More Ethical Paradigms. Healthcare (Switzerland), 2015, 3, 1054-1063.	2.0	33
25	Beyond nutrient-based food indices: a data mining approach to search for a quantitative holistic index reflecting the degree of food processing and including physicochemical properties. Food and Function, 2018, 9, 561-572.	4.6	33
26	Associations between diet-related diseases and impaired physiological mechanisms: a holistic approach based on meta-analyses to identify targets for preventive nutrition. Nutrition Reviews, 2013, 71, 643-656.	5.8	31
27	Do alcoholic beverages, obesity and other nutritional factors modify the risk of familial colorectal cancer? A systematic review. Critical Reviews in Oncology/Hematology, 2017, 119, 94-112.	4.4	28
28	Food Composition Databases: Does It Matter to Human Health?. Nutrients, 2021, 13, 2816.	4.1	26
29	The search for a new paradigm to study micronutrient and phytochemical bioavailability: From reductionism to holism. Medical Hypotheses, 2014, 82, 181-186.	1.5	23
30	Association between consumption of fruit or processed fruit and chronic diseases and their risk factors: a systematic review of meta-analyses. Nutrition Reviews, 2019, 77, 376-387.	5.8	23
31	In vitro fermentation of beet fibre and barley bran, of their insoluble residues after digestion and of ileal effluents. Journal of the Science of Food and Agriculture, 1997, 75, 315-325.	3.5	21
32	A study of ultra-processing marker profiles in 22,028 packaged ultra-processed foods using the Siga classification. Journal of Food Composition and Analysis, 2021, 99, 103848.	3.9	21
33	Comparison of total energy expenditure assessed by two devices in controlled and freeâ€ŀiving conditions. European Journal of Sport Science, 2015, 15, 391-399.	2.7	19
34	How can both the health potential and sustainability of cereal products be improved? A French perspective. Journal of Cereal Science, 2014, 60, 540-548.	3.7	18
35	Wheat-based foods and non celiac gluten/wheat sensitivity: Is drastic processing the main key issue?. Medical Hypotheses, 2015, 85, 934-939.	1.5	17
36	Restricted Bovine Serum Albumin Diffusion through the Protein Network of Pasta. Journal of Agricultural and Food Chemistry, 1998, 46, 4635-4641.	5.2	16

#	Article	IF	CITATIONS
37	Influence of Phytosterol and Phytostanol Food Supplementation on Plasma Liposoluble Vitamins and Provitamin A Carotenoid Levels in Humans: An Updated Review of the Evidence. Critical Reviews in Food Science and Nutrition, 2017, 57, 00-00.	10.3	16
38	Exclusive reductionism, chronic diseases and nutritional confusion: the degree of processing as a lever for improving public health. Critical Reviews in Food Science and Nutrition, 2022, 62, 2784-2799.	10.3	15
39	Nutrient density and bioaccessibility, and the antioxidant, satiety, glycemic, and alkalinizing potentials of fruit-based foods according to the degree of processing: a narrative review. Critical Reviews in Food Science and Nutrition, 2020, 60, 3233-3258.	10.3	14
40	Gastrointestinal or simulatedin vitro digestion changes dietary fibre properties and their fermentation. Journal of the Science of Food and Agriculture, 1998, 77, 327-333.	3.5	13
41	Food Health Potential is Primarily Due to Its Matrix Structure, then Nutrient Composition: A New Paradigm for Food Classification according to Technological Processes Applied. Journal of Nutritional Health & Food Engineering, 2014, 1, .	0.5	13
42	Nutrition transition and chronic diseases in China (1990–2019): industrially processed and animal calories rather than nutrients and total calories as potential determinants of the health impact. Public Health Nutrition, 2021, 24, 5561-5575.	2.2	12
43	Lipotropic capacity of raw plant-based foods: A new index that reflects their lipotrope density profile. Journal of Food Composition and Analysis, 2011, 24, 895-915.	3.9	11
44	Influence of Sourdough Prefermentation, of Steam Cooking Suppression and of Decreased Sucrose Content during Wheat Flakes Processing on the Plasma Glucose and Insulin Responses and Satiety of Healthy Subjects. Journal of the American College of Nutrition, 2009, 28, 30-36.	1.8	9
45	Donner un nouvel avenir au pain dans le cadre d'une alimentation durable et préventive. Cahiers De Nutrition Et De Dietetique, 2015, 50, 39-46.	0.3	9
46	A Sustainable and Global Health Perspective of the Dietary Pattern of French Population during the 1998–2015 Period from INCA Surveys. Sustainability, 2021, 13, 7433.	3.2	9
47	New Concepts and Paradigms for the Protective Effects of Plant-Based Food Components in Relation to Food Complexity. , 2017, , 293-312.		8
48	Organic food retailing: to what extent are foods processed and do they contain markers of ultra-processing?. International Journal of Food Sciences and Nutrition, 2022, 73, 172-183.	2.8	7
49	Quels types de produits céréaliers pour le petit déjeuner ?. Cahiers De Nutrition Et De Dietetique, 2007, 42, 309-319.	0.3	6
50	Thermal and refining processes, not fermentation, tend to reduce lipotropic capacity of plant-based foods. Food and Function, 2011, 2, 483.	4.6	6
51	Empirico-inductive and/or hypothetico-deductive methods in food science and nutrition research: which one to favor for a better global health?. Critical Reviews in Food Science and Nutrition, 2023, 63, 2480-2493.	10.3	5
52	Grain-Based Products, Food Structure and Health Potential: Holism Vs Reductionism. Journal of Nutritional Health & Food Engineering, 2014, 1, .	0.5	4
53	Foods and Health Potential: Is Food Engineering the Key Issue?. Journal of Nutritional Health & Food Engineering, 2014, 1, .	0.5	4
54	Lipotropes from plant-based foods supplied by a standard French diet vs. food guide pyramid recommendations: Grain products are the best sources at lower cost. Journal of Food Composition and Analysis, 2012, 28, 135-148.	3.9	3

ANTHONY FARDET

#	Article	IF	CITATIONS
55	Procédés technologiques, valeurs santé des aliments, et diabète de type 2. Medecine Des Maladies Metaboliques, 2014, 8, 608-611.	0.1	3
56	Caractérisation du potentiel lipotropique des produits alimentaires d'origine végétale. Cahiers De Nutrition Et De Dietetique, 2012, 47, 291-302.	0.3	1
57	Energy Intake Evaluation by a Learning Approach Using the Number of Food Portions and Body Weight. Foods, 2021, 10, 2273.	4.3	1
58	Nutrient Bioavailability and Kinetics of Release is a Neglected Key Issue When Comparing Complex Food Versus Supplement Health Potential. Journal of Nutritional Health & Food Engineering, 2015, 2, .	0.5	1
59	Coarse Food Grains Are Important Actors of Healthy and Sustainable Diets. Foods, 2016, 5, 25.	4.3	0
60	The compliance of French purchasing behaviors with a healthy and sustainable diet: a 1-yr follow-up of regular customers in hypermarkets. Renewable Agriculture and Food Systems, 0, , 1-11.	1.8	0
61	Compared with fresh <i>injera</i> , stale <i>injera</i> increases satiety in healthy subjects, but does not decrease the glycemic index. Cereal Chemistry, 0, , .	2.2	0