Simon A Kondrat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9561841/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of single-site gold catalysis in acetylene hydrochlorination. Science, 2017, 355, 1399-1403.	12.6	380
2	Stable amorphous georgeite as a precursor to a high-activity catalyst. Nature, 2016, 531, 83-87.	27.8	128
3	Elucidation and Evolution of the Active Component within Cu/Fe/ZSM-5 for Catalytic Methane Oxidation: From Synthesis to Catalysis. ACS Catalysis, 2013, 3, 689-699.	11.2	117
4	Au–Pd Nanoparticles Dispersed on Composite Titania/Graphene Oxide-Supports as a Highly Active Oxidation Catalyst. ACS Catalysis, 2015, 5, 3575-3587.	11.2	103
5	Aqueous-Phase Methane Oxidation over Fe-MFI Zeolites; Promotion through Isomorphous Framework Substitution. ACS Catalysis, 2013, 3, 1835-1844.	11.2	99
6	Facile synthesis of precious-metal single-site catalysts using organic solvents. Nature Chemistry, 2020, 12, 560-567.	13.6	96
7	Ruthenium Nanoparticles Supported on Carbon: An Active Catalyst for the Hydrogenation of Lactic Acid to 1,2-Propanediol. ACS Catalysis, 2015, 5, 5047-5059.	11.2	91
8	The controlled catalytic oxidation of furfural to furoic acid using AuPd/Mg(OH) ₂ . Catalysis Science and Technology, 2017, 7, 5284-5293.	4.1	87
9	Partial Oxidation of Ethane to Oxygenates Using Fe- and Cu-Containing ZSM-5. Journal of the American Chemical Society, 2013, 135, 11087-11099.	13.7	83
10	Elucidating the Role of CO ₂ in the Soft Oxidative Dehydrogenation of Propane over Ceria-Based Catalysts. ACS Catalysis, 2018, 8, 3454-3468.	11.2	80
11	Methyl Formate Formation from Methanol Oxidation Using Supported Gold–Palladium Nanoparticles. ACS Catalysis, 2015, 5, 637-644.	11.2	78
12	Baseâ€Free Oxidation of Glycerol Using Titaniaâ€Supported Trimetallic Au–Pd–Pt Nanoparticles. ChemSusChem, 2014, 7, 1326-1334.	6.8	73
13	Base-free glucose oxidation using air with supported gold catalysts. Green Chemistry, 2014, 16, 3132-3141.	9.0	71
14	Acetylene hydrochlorination using Au/carbon: a journey towards single site catalysis. Chemical Communications, 2017, 53, 11733-11746.	4.1	64
15	Deactivation of a Single-Site Gold-on-Carbon Acetylene Hydrochlorination Catalyst: An X-ray Absorption and Inelastic Neutron Scattering Study. ACS Catalysis, 2018, 8, 8493-8505.	11.2	63
16	The effect of heat treatment on phase formation of copper manganese oxide: Influence on catalytic activity for ambient temperature carbon monoxide oxidation. Journal of Catalysis, 2011, 281, 279-289.	6.2	58
17	Ethanol to 1,3â€Butadiene Conversion by using ZrZnâ€Containing MgO/SiO ₂ Systems Prepared by Coâ€precipitation and Effect of Catalyst Acidity Modification. ChemCatChem, 2016, 8, 2376-2386.	3.7	54
18	Mechanochemical synthesis of copper manganese oxide for the ambient temperature oxidation of carbon monoxide. Applied Catalysis B: Environmental, 2015, 165, 222-231.	20.2	53

#	Article	IF	CITATIONS
19	Synthesis of high surface area CuMn2O4 by supercritical anti-solvent precipitation for the oxidation of CO at ambient temperature. Catalysis Science and Technology, 2011, 1, 740.	4.1	50
20	Green preparation of transition metal oxide catalysts using supercritical CO2 anti-solvent precipitation for the total oxidation of propane. Applied Catalysis B: Environmental, 2013, 140-141, 671-679.	20.2	50
21	Surface functionalized TiO2 supported Pd catalysts for solvent-free selective oxidation of benzyl alcohol. Catalysis Today, 2015, 250, 218-225.	4.4	45
22	In situ spectroscopic investigation of oxidative dehydrogenation and disproportionation of benzyl alcohol. Physical Chemistry Chemical Physics, 2013, 15, 12147.	2.8	43
23	The preparation of large surface area lanthanum based perovskite supports for AuPt nanoparticles: tuning the glycerol oxidation reaction pathway by switching the perovskite B site. Faraday Discussions, 2016, 188, 427-450.	3.2	41
24	Physical mixing of metal acetates: a simple, scalable method to produce active chloride free bimetallic catalysts. Chemical Science, 2012, 3, 2965.	7.4	38
25	Selective catalytic oxidation using supported gold–platinum and palladium–platinum nanoalloys prepared by sol-immobilisation. Physical Chemistry Chemical Physics, 2013, 15, 10636.	2.8	37
26	The surface of iron molybdate catalysts used for the selective oxidation of methanol. Surface Science, 2016, 648, 163-169.	1.9	36
27	The effect of sodium species on methanol synthesis and water–gas shift Cu/ZnO catalysts: utilising high purity zincian georgeite. Faraday Discussions, 2017, 197, 287-307.	3.2	33
28	A new class of Cu/ZnO catalysts derived from zincian georgeite precursors prepared by co-precipitation. Chemical Science, 2017, 8, 2436-2447.	7.4	32
29	Preparation of a highly active ternary Cu-Zn-Al oxide methanol synthesis catalyst by supercritical CO2 anti-solvent precipitation. Catalysis Today, 2018, 317, 12-20.	4.4	31
30	Solventâ€Activated Hafniumâ€Containing Zeolites Enable Selective and Continuous Glucose–Fructose Isomerisation. Angewandte Chemie - International Edition, 2020, 59, 20017-20023.	13.8	31
31	Novel cobalt zinc oxide Fischer–Tropsch catalysts synthesised using supercritical anti-solvent precipitation. Catalysis Science and Technology, 2014, 4, 1970-1978.	4.1	29
32	Supercritical antisolvent precipitation of TiO2 with tailored anatase/rutile composition for applications in redox catalysis and photocatalysis. Applied Catalysis A: General, 2015, 504, 62-73.	4.3	29
33	A Perspective on Counting Catalytic Active Sites and Rates of Reaction Using X-Ray Spectroscopy. Topics in Catalysis, 2019, 62, 1218-1227.	2.8	27
34	An Investigation of the Effect of the Addition of Tin to 5 %Pd/TiO ₂ for the Hydrogenation of Furfuryl Alcohol. ChemCatChem, 2015, 7, 2122-2129.	3.7	23
35	Total oxidation of naphthalene using copper manganese oxide catalysts. Catalysis Today, 2015, 258, 610-615.	4.4	23
36	<i>In situ</i> K-edge X-ray absorption spectroscopy of the ligand environment of single-site Au/C catalysts during acetylene hydrochlorination. Chemical Science, 2020, 11, 7040-7052.	7.4	23

#	Article	IF	CITATIONS
37	Enhancing the understanding of the glycerol to lactic acid reaction mechanism over AuPt/TiO2 under alkaline conditions. Journal of Chemical Physics, 2020, 152, 134705.	3.0	21
38	Selective deposition of palladium onto supported nickel – bimetallic catalysts for the hydrogenation of crotonaldehyde. Catalysis Science and Technology, 2013, 3, 2746.	4.1	20
39	Supercritical Antisolvent Precipitation of Amorphous Copper–Zinc Georgeite and Acetate Precursors for the Preparation of Ambientâ€Pressure Waterâ€Gasâ€Shift Copper/Zinc Oxide Catalysts. ChemCatChem, 2017, 9, 1621-1631.	3.7	20
40	Nanoporous alumino- and borosilicate-mediated Meinwald rearrangement of epoxides. Applied Catalysis A: General, 2015, 493, 17-24.	4.3	19
41	An investigation of the effect of carbon support on ruthenium/carbon catalysts for lactic acid and butanone hydrogenation. Physical Chemistry Chemical Physics, 2016, 18, 17259-17264.	2.8	19
42	Preparation of Fischer–Tropsch Supported Cobalt Catalysts Using a New Gas Anti-Solvent Process. ACS Catalysis, 2013, 3, 764-772.	11.2	18
43	The Effects of Secondary Oxides on Copperâ€Based Catalysts for Green Methanol Synthesis. ChemCatChem, 2017, 9, 1655-1662.	3.7	17
44	Dehydrative Etherification Reactions of Glycerol with Alcohols Catalyzed by Recyclable Nanoporous Aluminosilicates: Telescoped Routes to Glyceryl Ethers. ACS Sustainable Chemistry and Engineering, 2016, 4, 835-843.	6.7	17
45	The use of carbon monoxide as a probe molecule in spectroscopic studies for determination of exposed gold sites on TiO ₂ . Physical Chemistry Chemical Physics, 2015, 17, 23236-23244.	2.8	16
46	Sulfur Promotion in Au/C Catalyzed Acetylene Hydrochlorination. Small, 2021, 17, 2007221.	10.0	16
47	Homocoupling of Phenylboronic Acid using Atomically Dispersed Gold on Carbon Catalysts: Catalyst Evolution Before Reaction. ChemCatChem, 2018, 10, 1853-1859.	3.7	15
48	Oxidative Carboxylation of 1-Decene to 1,2-Decylene Carbonate. Topics in Catalysis, 2018, 61, 509-518.	2.8	13
49	Operando potassium K-edge X-ray absorption spectroscopy: investigating potassium catalysts during soot oxidation. Physical Chemistry Chemical Physics, 2020, 22, 18976-18988.	2.8	12
50	Spectroscopic Investigation of Titaniaâ \in Supported Gold Nanoparticles Prepared by a Modified Deposition/Precipitation Method for the Oxidation of CO. ChemCatChem, 2016, 8, 2136-2145.	3.7	11
51	Solvent-free aerobic epoxidation of 1-decene using supported cobalt catalysts. Catalysis Today, 2019, 333, 154-160.	4.4	11
52	Physical mixing of metal acetates: optimisation of catalyst parameters to produce highly active bimetallic catalysts. Catalysis Science and Technology, 2013, 3, 2910.	4.1	10
53	Catalysis for Fuels: general discussion. Faraday Discussions, 2017, 197, 165-205.	3.2	8
54	Evaluating the Activity and Stability of Perovskite LaMO3-Based Pt Catalysts in the Aqueous Phase Reforming of Glycerol. Topics in Catalysis, 2021, 64, 992-1009.	2.8	8

#	Article	IF	CITATIONS
55	Designing new catalysts for synthetic fuels: general discussion. Faraday Discussions, 2017, 197, 353-388.	3.2	7
56	Solventâ€Activated Hafniumâ€Containing Zeolites Enable Selective and Continuous Glucose–Fructose Isomerisation. Angewandte Chemie, 2020, 132, 20192-20198.	2.0	6
57	Designing new catalysts: synthesis of new active structures: general discussion. Faraday Discussions, 2016, 188, 131-159.	3.2	4
58	Chapter 7. Catalyst preparation using supercritical fluid precipitation. Catalysis, 0, , 218-248.	1.0	3
59	A Review of Preparation Strategies for α-MoC1–x Catalysts. Johnson Matthey Technology Review, 2022, 66, 285-315.	1.0	3
60	The effect of ring size on the selective carboxylation of cycloalkene oxides. Catalysis Science and Technology, 2017, 7, 1433-1439.	4.1	2
61	Preface to Special Issue on 5th UK Catalysis Conference (UKCC 2019). Topics in Catalysis, 2020, 63, 255-255.	2.8	1
62	Synchrotron Radiation and Catalytic Science. Synchrotron Radiation News, 2020, 33, 10-14.	0.8	1
63	Advanced approaches: general discussion. Faraday Discussions, 2021, 229, 378-421.	3.2	1
64	Characterisation of ethylene adsorption on model skeletal cobalt catalysts by inelastic and quasi-elastic neutron scattering. Catalysis Communications, 2022, 163, 106409.	3.3	1
65	Application of novel catalysts: general discussion. Faraday Discussions, 2016, 188, 399-426.	3.2	0
66	Faraday Discussions meeting Catalysis for Fuels. Chemical Communications, 2017, 53, 4880-4887.	4.1	0
67	Precious Metals for Environmental Catalysis: Gold. , 2017, , 181-209.		0
68	Theory: general discussion. Faraday Discussions, 2021, 229, 131-160.	3.2	0
69	Iron molybdate catalysts synthesised <i>via</i> dicarboxylate decomposition for the partial oxidation of methanol to formaldehyde. Catalysis Science and Technology, 2022, 12, 4552-4560.	4.1	0