
Kaori Shiojiri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9561814/publications.pdf Version: 2024-02-01

KAODI SHIOIDI

#	Article	IF	CITATIONS
1	Plant–plant communication and community of herbivores on tall goldenrod. Ecology and Evolution, 2021, 11, 7439-7447.	1.9	8
2	Aboveground plant-to-plant communication reduces root nodule symbiosis and soil nutrient concentrations. Scientific Reports, 2021, 11, 12675.	3.3	3
3	Field-Grown Rice Plants Become More Productive When Exposed to Artificially Damaged Weed Volatiles at the Seedling Stage. Frontiers in Plant Science, 2021, 12, 692924.	3.6	2
4	Effective distance of volatile cues for plant–plant communication in beech. Ecology and Evolution, 2021, 11, 12445-12452.	1.9	15
5	Synchronous Occurrences of the Diamondback Moth (Lepidoptera: Plutellidae) and its Parasitoid Wasp Cotesia vestalis (Hymenoptera: Braconidae) in Greenhouses in a Satoyama Area. Environmental Entomology, 2020, 49, 10-14.	1.4	4
6	Within-plant signaling via volatiles in beech (<i>Fagus crenata</i> Blume). Journal of Plant Interactions, 2020, 15, 50-53.	2.1	4
7	Exposure to artificially damaged goldenrod volatiles increases saponins in seeds of field-grown soybean plants. Phytochemistry Letters, 2020, 36, 7-10.	1.2	4
8	Evidence that ERF transcriptional regulators serve as possible key molecules for natural variation in defense against herbivores in tall goldenrod. Scientific Reports, 2020, 10, 5352.	3.3	3
9	Targeting diamondback moths in greenhouses by attracting specific native parasitoids with herbivory-induced plant volatiles. Royal Society Open Science, 2020, 7, 201592.	2.4	8
10	Effects of trans-2-hexenal and cis-3-hexenal on post-harvest strawberry. Scientific Reports, 2019, 9, 10112.	3.3	21
11	Insect Herbivory Selects for Volatile-Mediated Plant-Plant Communication. Current Biology, 2019, 29, 3128-3133.e3.	3.9	76
12	Multifunctionality of herbivory-induced plant volatiles in chemical communication in tritrophic interactions. Current Opinion in Insect Science, 2019, 32, 110-117.	4.4	58
13	Pest management using mint volatiles to elicit resistance in soy: mechanism and application potential. Plant Journal, 2018, 96, 910-920.	5.7	33
14	Uninfested plants and honey enhance the attractiveness of a volatile blend to a parasitoidCotesia vestalis. Journal of Applied Entomology, 2018, 142, 978-984.	1.8	5
15	Identification of a Hexenal Reductase That Modulates the Composition of Green Leaf Volatiles. Plant Physiology, 2018, 178, 552-564.	4.8	45
16	Weeding volatiles reduce leaf and seed damage to field-grown soybeans and increase seed isoflavones. Scientific Reports, 2017, 7, 41508.	3.3	12
17	Oviposition of diamondback moth Plutella xylostella females is affected by herbivore-induced plant volatiles that attract the larval parasitoid Cotesia vestalis. Arthropod-Plant Interactions, 2017, 11, 235-239.	1.1	7
18	Geographic dialects in volatile communication between sagebrush individuals. Ecology, 2016, 97, 2917-2924.	3.2	36

Kaori Shiojiri

#	Article	IF	CITATIONS
19	Seasonal variation of responses to herbivory and volatile communication in sagebrush (Artemisia) Tj ETQq1 1 C	.784314 rg 2.4	BT Overlock
20	Oviposition preference of cabbage white butterflies in the framework of costs and benefits of interspecific herbivore associations. Royal Society Open Science, 2015, 2, 150524.	2.4	4
21	Cry-wolf signals emerging from coevolutionary feedbacks in a tritrophic system. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20152169.	2.6	1
22	Airborne signals of communication in sagebrush: a pharmacological approach. Plant Signaling and Behavior, 2015, 10, e1095416.	2.4	9
23	Deciphering the language of plant communication: volatile chemotypes of sagebrush. New Phytologist, 2014, 204, 380-385.	7.3	88
24	Interplant volatile signaling in willows: revisiting the original talking trees. Oecologia, 2013, 172, 869-875.	2.0	52
25	Kin recognition affects plant communication and defence. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20123062.	2.6	153
26	CytosolicLOXoverexpression inArabidopsisenhances the attractiveness of parasitic wasps in response to herbivory and incidences of parasitism. Journal of Plant Interactions, 2013, 8, 207-215.	2.1	4
27	Intermittent exposure to traces of green leaf volatiles triggers the production of (<i>Z</i>)-3-hexen-1-yl acetate and (<i>Z</i>)-3-hexen-1-ol in exposed plants. Plant Signaling and Behavior, 2013, 8, e27013.	2.4	6
28	Prolonged exposure is required for communication in sagebrush. Arthropod-Plant Interactions, 2012, 6, 197-202.	1.1	5
29	Clonal growth of sagebrush (<i>Artemisia tridentata</i>) (Asteraceae) and its relationship to volatile communication. Plant Species Biology, 2012, 27, 69-76.	1.0	7
30	Longâ€ŧerm demographic consequences of eavesdropping for sagebrush. Journal of Ecology, 2012, 100, 932-938.	4.0	24
31	Plant communication – why should plants emit volatile cues?. Journal of Plant Interactions, 2011, 6, 81-84.	2.1	16
32	Effect of genetic relatedness on volatile communication of sagebrush (<i>Artemisia tridentata</i>). Journal of Plant Interactions, 2011, 6, 193-193.	2.1	7
33	Do host plant volatiles influence the diel periodicity of caterpillar foraging of all species attacking the same host plant. Journal of Plant Interactions, 2011, 6, 121-123.	2.1	2
34	Preferences of parasitic wasps for cabbage plants infested by plural herbivore species. Journal of Plant Interactions, 2011, 6, 167-168.	2.1	4
35	Plant age, seasonality, and plant communication in sagebrush. Journal of Plant Interactions, 2011, 6, 85-88.	2.1	5
36	Acquired immunity to herbivory and allelopathy caused by airborne plant emissions. Phytochemistry, 2010, 71, 1642-1649.	2.9	78

Kaori Shiojiri

#	Article	IF	CITATIONS
37	Herbivore-Specific, Density-Dependent Induction of Plant Volatiles: Honest or "Cry Wolf―Signals?. PLoS ONE, 2010, 5, e12161.	2.5	125
38	An Air Transfer Experiment Confirms the Role of Volatile Cues in Communication between Plants. American Naturalist, 2010, 176, 381-384.	2.1	30
39	Identity recognition and plant behavior. Plant Signaling and Behavior, 2010, 5, 854-855.	2.4	9
40	Volatile communication among sagebrush branches affects herbivory: timing of active cues. Arthropod-Plant Interactions, 2009, 3, 99-104.	1.1	13
41	Selfâ€recognition affects plant communication and defense. Ecology Letters, 2009, 12, 502-506.	6.4	178
42	Seasonality of herbivory and communication between individuals of sagebrush. Arthropod-Plant Interactions, 2008, 2, 87-92.	1.1	26
43	Maize plants sprayed with either jasmonic acid or its precursor, methyl linolenate, attract armyworm parasitoids, but the composition of attractants differs. Entomologia Experimentalis Et Applicata, 2008, 129, 189-199.	1.4	44
44	Vascular Systemic Induced Resistance For Artemisia cana and Volatile Communication for Artemisia douglasiana. American Midland Naturalist, 2008, 159, 468-477.	0.4	17
45	DAMAGE-INDUCED RESISTANCE IN SAGEBRUSH: VOLATILES ARE KEY TO INTRA- AND INTERPLANT COMMUNICATION. Ecology, 2006, 87, 922-930.	3.2	270
46	Plant Volatiles, Rather than Light, Determine the Nocturnal Behavior of a Caterpillar. PLoS Biology, 2006, 4, e164.	5.6	56
47	Can plants betray the presence of multiple herbivore species to predators and parasitoids? The role of learning in phytochemical information networks. Ecological Research, 2006, 21, 3-8.	1.5	67
48	Role of the Lipoxygenase/lyase Pathway of Host-food Plants in the Host Searching Behavior of Two Parasitoid Species, Cotesia glomerata and Cotesia plutellae. Journal of Chemical Ecology, 2006, 32, 969-979.	1.8	69
49	Plant age, communication, and resistance to herbivores: young sagebrush plants are better emitters and receivers. Oecologia, 2006, 149, 214-220.	2.0	59
50	Changing green leaf volatile biosynthesis in plants: An approach for improving plant resistance against both herbivores and pathogens. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16672-16676.	7.1	259
51	DAMAGE-INDUCED RESISTANCE IN SAGEBRUSH: VOLATILES ARE KEY TO INTRA- AND INTERPLANT COMMUNICATION. , 2006, 87, 922.		2
52	Effects of oil droplets by Pieris caterpillars against generalist and specialist carnivores. Ecological Research, 2005, 20, 695-700.	1.5	5
53	Parasitoid Preference for Host-Infested Plants Is Affected by the Risk of Intraguild Predation. Journal of Insect Behavior, 2005, 18, 567-576.	0.7	14
54	Corn Plants Treated with Jasmonic Acid Attract More Specialist Parasitoids, Thereby Increasing Parasitization of the Common Armyworm. Journal of Chemical Ecology, 2004, 30, 1797-1808.	1.8	35

KAORI SHIOJIRI

#	Article	IF	CITATIONS
55	Effects of specialist parasitoids on oviposition preference of phytophagous insects: encounter-dilution effects in a tritrophic interaction. Ecological Entomology, 2003, 28, 573-578.	2.2	43
56	Functions of Plant Infochemicals in Tritrophic Interactions between Plants, Herbivores and Carnivorous Natural Enemies Japanese Journal of Applied Entomology and Zoology, 2002, 46, 117-133.	0.1	22
57	Oviposition preferences of herbivores are affected by tritrophic interaction webs. Ecology Letters, 2002, 5, 186-192.	6.4	128
58	Herbivore-species-specific interactions between crucifer plants and parasitic wasps (Hymenoptera:) Tj ETQq0 0 0 Entomology and Zoology, 2000, 35, 519-524.	rgBT /Ove 1.2	erlock 10 Tf 50 35
59	Flight response of parasitoids toward plant-herbivore complexes: A comparative study of two parasitoid-herbivore systems on cabbage plants Applied Entomology and Zoology, 2000, 35, 87-92.	1.2	107